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Transaction costs and crowding
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We use industry data to determine whether crowding of the investment space is caused by portfolio
construction processes typical to the investment community. In particular, this paper examines the
extent that transaction cost models cause crowding of the investment space, even when the investment
models are completely unrelated to one another. We find that as transaction costs become more
significant in the portfolio creation process as portfolios increase in size from $500 million to $5 billion,
crowding actually declines for long-only portfolios and mainly declines, but sometimes increases for
market neutral portfolios. This research sheds more light on how crowding develops through actions
by players within the financial system.
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Quantitative equity portfolio management; Optimal portfolios; Portfolio construction
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1. Introduction

Although financial crises have various origins, they are fre-
quently caused or at least amplified by trade crowding in the
investment space (Chincarini, 1998, 2012). Crowding can take
place through a variety of mechanisms. First, trading spaces
may become crowded if investors follow similar trading mod-
els, either by coincidence or intentionally, because this makes
it likely that their resulting portfolios will be very similar. The
key feature that makes the space crowded is that the number of
portfolio managers chasing a similar strategy is too large given
the available liquidity or typical turnover. A series of studies
has used institutional holding data to document how copycat
trading can lead to crowding (Choi 2013, Kim and Zhang 2013,
Spilker 2016).

Crowding can also occur when investors use similar
techniques to construct their portfolios. Even if they have dif-
ferent models for generating their expected returns, investors’
use of similar techniques for portfolio construction can cause
their portfolios to converge. Some studies using institutional
holding data from the United States and Sweden have shown
that similar portfolio structures can lead to crowding (Bohlin
and Rosvall 2014, Balagyozyan and Cakan 2016). One com-
ponent of portfolio construction considers the explicit and im-
plicit costs of trading securities. If a group of similar portfolio
managers have similar transaction cost models, their portfolios
might be more similar than they would be in the absence of
transaction costs.

∗Corresponding author. Email: lbchincarini@usfca.edu

Crowding can be a problem for investors because it alters
the risk and return dynamics of a trade (Pojarliev and Levich
2011, Cahan and Luo 2013, Yan 2013, Ibbotson and Idzorek
2014, Menkveld 2014). Specifically, it makes the risk of a trade
endogenous to the trade itself. Some research on institutional
holding data shows that crowded hedge fund or institutional
holdings can lead to distorted risks and returns (Blocher 2013,
Lou and Polk 2013, Anton and Polk 2014, Bayraktar et al.
2015), and one analysis of the stock ownership of institutional
investors shows that higher crowdedness in stock ownership
leads to substantially higher liquidity risk (Beber et al. 2014).
However, other research suggests that hedge fund crowding
does not distort markets (Reca et al. 2014).

Some hedge fund managers and quants maintained that the
quant crisis of 2007 was caused by crowding.† Some argued
that it was crowding of the alpha models (Cerla 2007,
Chincarini 2012, Khandani and Lo 2007, Rothman 2007), but
others argued that it was really about liquidity and that trans-
action cost models may have crowded the types of trades that
were made (Chincarini 2012)—that is, market impact costs
might have led quant funds with large portfolios to trade only a

†The quant crisis refers to an event that occurred during the period
2 August to 8 August 2007. During this period, a group of highly
successful quantitative long/short equity funds that used quantitative
equity strategies suffered extreme losses in their portfolios; these firms
included AQR, Blackrock, Goldman Sachs, State Street, and many
others. It is commonly believed that the extreme losses occurred due
the firms’ crowding of investment positions, which led to a fire sale
liquidation of similar portfolios that happened to be quantitatively
constructed. For a firsthand account of the crisis, see chapter 8 of
Chincarini (2012).
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handful of very liquid securities, which caused extreme move-
ments in these securities. For example, according to Mark
Carhart, former Co-CIO of Quantitative Strategies at GSAM
and Founder of Kepos Capital, ‘Crowding among quants hap-
pens for several reasons, but the transaction costs model was of
primary importance, as it caused us to trade similar securities
at each point in time’ (Chincarini 2012).

This paper studies the interacting roles of transaction cost
models, portfolio construction, and crowding, and makes sev-
eral contributions to the literature on crowding and liquidity.
First, it helps to clarify how transaction cost models contribute
to crowding in the investment space. Second, it introduces a
simple method for approximating several varieties of trans-
action costs that can be used in portfolio optimization. The
approximation is very accurate and quite simple to use, and
practitioners can use it to model a variety of complex transac-
tion costs within a standard portfolio optimization framework.

Additionally, this paper presents a simulation of equity port-
folio managers that act independently of one another; the sim-
ulation shows that as the average portfolio size grows from
$500 million to $5 billion in assets, transaction costs do not
increase crowding. In fact, crowding actually decreases in this
range. As the average portfolio grows from $5 billion to $20
billion, crowding begins to increase; however, it is still not
significantly different from a scenario involving portfolios that
do not consider transaction costs. Thus, the evidence in this
paper suggests that when transaction costs are properly inte-
grated in the portfolio management process, they are unlikely
to cause crowding problems for reasonably sized portfolios.
For example, it is more likely that the crowdedness that made
it difficult for portfolio managers to exit positions in August
2007, was caused by crowded alpha models or less disciplined
consideration of transaction costs in the portfolio building pro-
cess.

The rest of this paper is organized as follows. Section 2
defines the measure of crowding that will be used in the paper.
Section 3 presents our empirical framework for examining the
crowding that arises from portfolio construction and transac-
tion costs. Section 4 describes the transaction cost models
we use to construct portfolios for the simulation. Section 5
discusses the empirical simulation procedure and the results
from the simulated portfolios. Finally, section 6 concludes the
paper.

2. A definition of crowding

For the purposes of this paper, we define crowding to be when
investors own portfolios with similar holdings. Let the simi-
larity between two portfolios be measured by si j , which is the
dot product between the position weight vectors (w) of each
portfolio i and j divided by the product of the Euclidean norm
of each vector. Thus,

si j = w′
i w j

|wi ||w j | (1)

where the Euclidean norm is defined across N assets as

|wi | =
√√√√ N∑

n=1

w2
in (2)

This measure will have a value between 0 and 1 for portfolios
that can only be long securities (i.e. long-only portfolios). This
measure will have a value between −1 and 1 for portfolios that
can have negative weights.†

In our paper, we will study more than just two portfolios.
Thus, for studying a group of M portfolios, we define the N -by-
M portfolio holdings matrix as the matrix, H , which consists
of columns of position weight vectors on N assets for each of
M portfolios. The similarity matrix amongst all portfolios is
computed as

S = (
H ′H

) ◦ ˆ̂H (3)

where ◦ represents the Hadamard product or the element-by-
element multiplication of the matrices, and

ˆ̂H =
⎡
⎢⎣

1
ĥ11

1
ĥ12

... 1
ĥ1M

... ... ... ...
1

ĥM1

1
ĥM2

... 1
ĥM M

⎤
⎥⎦ (4)

and Ĥ = |H |′|H |, where |H | contains the Euclidean norm
of each manager’s weight vector. The matrix S contains the
similarities of each portfolio with every other portfolio. For
example, element S12 represents the similarity of the portfolios
of managers 1 and 2. For a specific set of portfolios, our
measure of crowding is given by the average of the off-diagonal
elements of this matrix.‡

From the similarity matrix of M portfolios or portfolio man-
agers, we measure the crowding, C , amongst the group of
portfolios as the average similarity between portfolios.§

C =
∑M

i=1

∑M

j=1
Si, j − M

M2 − M
(5)

A simple example with a universe of three portfolios hold-
ing three stocks each might help to illustrate the concept of
crowding. Suppose our matrix H of manager holdings is given
as

H =
⎡
⎣ 0.4 0.8 0.45

0.4 0.1 0.45
0.2 0.1 0.10

⎤
⎦ . (6)

This example includes the portfolios of 3 managers. Each
manager has a portfolio whose holdings sum to 1. The portfolio
of manager 1 has 40% in stock 1, 40% in stock 2, and 20% in
stock 3. Portfolio 2 has 80% in stock 1 and 10% in stocks 2
and 3. Portfolio 3 has 45% in stock 1 and 2 and 10% in stock 3.

†This measure is related to more commonly used measure known as
Pearson correlation. One can think of Pearson correlation as a de-
meaned version of cosine similarity.
‡The diagonal elements are the similarity of each portfolio with itself,
which are irrelevant. Our measure of the similarity of portfolios to
measure crowding is related to a more commonly known cosine
similarity, which is a measure of the similarity between two vectors of
an inner product space that measures the cosine of the angle between

them. This measure is given as θ = cos−1
(

w′
i w j

‖w′
i ‖‖w j ‖

)
.

§The first term of the numerator represents the summation of all
the similarities between every portfolio manager and every other,
including it’s own. By subtracting M , we normalize this measure to
be the average similarity in excess of a group of portfolio managers
that are completely dissimilar to each other. In that case, the similarity
matrix would be a diagonal of 1s.
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One can see that manager 1 and manager 3 have very similar
or ‘crowded’portfolios. Manager 2’s portfolio is less related to
the other two. Using our formula for computing the similarity
matrix, we find that†

S =
⎡
⎣ 1 0.7796 0.9831
. 1 0.7906
. . 1

⎤
⎦ . (7)

The resulting similarity matrix corresponds with our intu-
ition. That is, portfolios 1 and 2 have a similarity measure of
0.7796, which is high, but not as high as portfolios 1 and 3,
which have a measure of 0.9831. For this universe of portfolios,
the crowding measure is C = 0.8454. This indicates that there
is a high level of similarity or crowding in the investment space
from these three portfolio managers.

In addition to capturing the crowding of a group of portfolios
or portfolio manager holdings, we also wish to study specifi-
cally how the portfolio construction process creates additional
crowding in the investment space. One way to do this is to
measure the crowding of portfolios before the portfolio con-
struction process and after the portfolio construction process.
Specifically, if we were able to observe the expected return
models or alpha models of portfolio managers before they as-
signed weights to their portfolios, we could infer the amount of
crowding that is added or removed from portfolio construction
techniques.

Let’s define Sα as the similarity matrix of portfolio managers
from their alpha models. This is the similarity of their stock
picking models, whether quantitative or qualitative managers.
Define Sp as the similarity of portfolios after the manager
has combined his alpha model with his optimization model
to construct his final portfolio. Thus, Sp is the similarity ma-
trix of actual portfolio holdings. Both measures are computed
as described previously. For both Sα and Sp, the crowding
measures are also computed and given by Cα and C p. In our
analysis, we will compute the ratio of these two as

� = C p

Cα
. (8)

Omega (�) measures the ratio of the crowding of actual port-
folios after the optimization process which explicitly considers
transaction costs to the crowding of the portfolio alpha signals.
When this ratio is greater than one, it means that the portfolio
construction process has caused portfolios to become more
crowded than they were just from the different portfolio man-
ager beliefs about the attractiveness of different stocks and
vice versa. In other words, this metric represents how much

†The components of S are given by,

H ′H =
⎡
⎣ 0.36 0.38 0.38

. 0.66 0.415

. . 0.415

⎤
⎦ ,

Ĥ =
⎡
⎣ 0.36 0.4874 0.3865

. 0.66 0.5234

. . 0.4150

⎤
⎦ ,

and

ˆ̂H =
⎡
⎣ 2.778 2.0515 2.5872

. 1.5152 1.9108

. . 2.4096

⎤
⎦ .

more similar on average the portfolio of holdings are than the
expected return models.‡

In our simulation analysis, we will look at the crowding of
portfolios, C , as well as the ratio of crowding before and after
portfolio construction, �.

3. The empirical framework

Our strategy to analyse the real-world implications of crowding
from the portfolio construction process is to simulate the con-
struction of portfolios using random alpha signals, as well as
factor model alphas, combined with real-world risk models and
realistic transaction cost models in order to examine the extent
of crowding that occurs indirectly due to the transaction cost
considerations of portfolio managers.§ The data for our em-
pirical study was obtained from several sources. We obtained
monthly stock returns and stock fundamental data from Factset.
We obtained monthly risk model parameters from the three
major risk model providers in the financial industry; Barra,
Axioma, and Northfield. For each risk model, we obtained all
components of the risk factor models on a monthly basis so
we could create the monthly variance–covariance matrix for
all stocks in the universe. The sample covers the period from
2006 to 2013 using monthly stock data of the largest 2000
stocks in the United States based on their market capitalization
at the end of the month.

In this section, we discuss the techniques of our simulation
process, including the creation of our expected return orαmod-
els for stocks, the risk models, and the portfolio construction
techniques.

3.1. Portfolio construction

In order to examine the extent of crowding from the portfolio
construction process due to transaction cost considerations, we
created portfolios that were more common in the professional
investment world. We considered two types of portfolio man-
agement techniques; a long-only portfolio and a market neutral
portfolio.¶

‡We could have also taken the average of the absolute values
in this similarity matrix. This would not be as representative of
crowding itself, but would also be important for a measure of financial
fragility. That is if 50% of managers are long a portfolio and 50%
of managers are short a portfolio, our current measure would have
a lower level of crowding than the absolute measure. However,
this particularly extreme case might indicate a very fragile financial
system when crowding is considered in this broader context. One
could also consider measuring the absolute value of stock weights
when computing the similarity matrix, however, this would not
represent crowding as much as it would represent activity in similar
stocks.
§The procedures used are very similar to those used by sophisticated
portfolio managers. For example, Goldman Sachs quant equity group
managed portfolios in a similar way. ‘Our approach to portfolio
construction uses these individual company alphas in combination
with other optimization criteria with the goal of maximizing each
portfolio’s risk-adjusted expected return net of transaction costs. The
inputs to our optimization process are return forecasts, transaction
cost estimates, risk estimates, and of course, client objectives. Our
risk model and risk forecasts are central to the optimization process.’
(Daniel 2008).
¶For more details on the optimization process, see appendices 1 and 2.
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The long-only portfolio manager maximizes net expected
return (i.e. returns after transaction costs) whilst keeping a
portfolio that has a volatility equal to the historical volatil-
ity of the S&P 500, is not levered, has a maximum stock
weight of 10% in any one name, and whose sector composition
matches that of the benchmark.† We also consider the same
long-only portfolio manager, however, rather than maximize
alpha subject to a risk target, the portfolio manager minimized
risk subject to a net expected return target.‡

The market neutral manager maximizes expected return sub-
ject to having no more than 5% volatility over the risk-free rate,
a dollar-neutral portfolio (i.e. the weights of the longs sum to
the weights of the shorts), a leverage of 2 (i.e. the weights
of the long portfolio sum to 1 and the weights of the short
portfolio sum to 1), that no stock can have a weight less than
−10% or more than 10%, and that the stocks are sector neutral
with respect to the long and short side of the portfolio.§ We
also considered a market neutral manager that minimized the
volatility of the portfolio subject to a target alpha.¶

For both types of portfolio construction, we also considered
liquidity constraints, that is we constrained the manager to
not purchase too much of a certain stock with respect to the
average daily trading volume, but did not report these results
in the paper.‖

3.2. The alpha models

3.2.1. Random alphas. In order to focus on the amount
of crowding that is caused from the portfolio construction
process when considering transaction costs, we used random
alpha models for the different portfolios. That is, each portfolio
manager receives signals about the stock universe that are

†These portfolio parameters are quite reasonable. In fact, we surveyed
several portfolio managers before creating our parameters. We
also experimented with other maximum and minimum weights for
the portfolio. The benchmark portfolio for the purposes of sector
neutralization was the top 2000 companies selected by market
capitalization each month and weighted by market capitalization.
‡The net expected return target was chosen to be the historical
annualized volatility of the S&P 500 divided by

√
12. There was

no specific reason for these choices, except that they seemed to be
reasonable. If a specific target could not be achieved, we searched for
the next reasonable target.
§These portfolio parameters are quite reasonable. In fact, we surveyed
several portfolio managers before creating our parameters. While it is
true that different managers may use slightly different parameters, the
main purpose of this paper is to describe the potential crowding effects
that may occur when portfolio managers use reasonable parameters
and similar risk models.
¶The target alpha was the same as with the long-only case.
‖We did not include liquidity constraints for the randomly generated
alphas, because for large portfolios, liquidity constraints could not
be kept at the 30% level of average daily trading volume (ADV).
They had to be increased up to 70% for the portfolio optimizer to
solve. For market neutral portfolios with 2x leverage it was even more
difficult to satisfy these constraints. This has interesting implications
for portfolio management. As a portfolio increases in size and one
seriously considers liquidity constraints, the portfolio manager must
either accept to trade over several days and accept an increasing
position over time or the portfolio manager must increase the portfolio
tolerance as a function of average daily trading volume. Both of these
increase the problems with liquidity and crowding in an exit situation.

random. Thus, the degree of crowding from the alpha models,
prior to portfolio construction, has an average value of zero.

In order to construct the random alpha signals for each
portfolio manager, we drew 100 random alpha signals for all
stocks from a normal distribution, α ∼ N (0,�α), where �

is the historical variance–covariance of asset returns up to
the time of portfolio selection with the off-diagonals set to
0.†† That is, we used the historical volatility of each asset,
but ignored the correlations.‡‡ These random alpha signals
can also be thought of as that the expected returns that each
manager generates for each stock prior to building his or her
portfolio which are randomly selected from the distribution of
returns for that particular stock.

3.2.2. Factor-model alphas. Although the random models
provide the greatest insight into the crowding from the portfolio
construction process, we also examined how crowding occurs
when expected return or alpha models are more realistic. Thus,
we constructed a series of alpha signals that were built from
three commonly accepted factor models for stock returns.§§
The first factor is the value factor (Chincarini and Kim 2006,
Fama and French 1992, Lakonishok et al. 1994). Our value
factor is constructed as the most recently reported book value
per share divided by the price of the security at the time of
portfolio formation. The second factor is the momentum factor
(Jegadeesh and Titman 1993, Chan et al. 1996, Carhart 1997,
Grinblatt and Moskowitz 2004). Our momentum factor is the
11 month compounded return for each security lagged 1 month
from the date of portfolio formation. The third factor is the
beta factor. This takes advantage of the beta anomaly; that is,
that high betas tend to underperform and low betas tend to
outperform (Black et al. 1972, Blume 1975, Fama and French
1992, Jagannathan and Wang 1996, Chincarini et al. 2013,
Frazzini and Pedersen 2014). Our beta factor is the historical
beta for each stock using the last 60 months of returns for the
security and the S&P 500 total return as the market return and
running an OLS regression of stock returns against the market
return. We take the negative of this value.

For these three factors, we compute a Z -score using the
standard formula,¶¶

zit =
(

fi t − f̄t

σ ft

)
(9)

where fi is the factor value for stock i , f̄t is cross-sectional
mean across stocks at time t , and σ ft is the cross-sectional
standard deviation at time t .

††The reason for choosing 100 random draws rather than a larger
number had to with the tradeoff between sufficiently large and the
computation time required. To create the 100 random portfolios for
12 months of data took 20 days on a supercomputer that used 12 cores.
‡‡Further research might wish to consider a random model which
draws from a standard normal distribution, α ∼ N (0, 1), where
signals for individual assets are independent of their historical
volatility. Further research may also wish to consider a model that
draws from a full variance–covariance matrix of asset returns rather
than just the diagonals.
§§All of our realistic alpha models were constructed from
fundamental stock data obtained from Factset’s database. All data
were lagged so as to avoid look-ahead bias.
¶¶For more info, see Chincarini and Kim (2006).
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We use the Z -scores to represent the alphas for the assets.
Thus, the higher the Z -score for a stock in a given month t , the
more attractive that stock for our portfolio.

Before constructing the portfolios, two further adjustments
to the Z -scores were needed. First, outlier data for individual
factors were removed using the interquartile range procedure.
That is, we computed the third quartile entry of every factor
(Q3) and the 1st quartile entry of every factor (Q1). Then we
computed the interquartile range (IQR) as Q3–Q1. We then
computed an upper and lower bound for the factor as,

U B = Q3 + 3I Q R (10)

L B = Q1 − 3I Q R (11)

We then labelled all stocks with factor values above the
upper bound and below the lower bound to be outliers.† For
these, we set their values to missing and computed the Z -scores
for the remaining stocks. For the outlier stocks, we fixed the
Z -scores at the maximum and minimum of the non-outlier
stocks’ Z -scores.‡

Second, in order to use the Z -scores as expected return or
alpha signals and as after-tax expected returns, we converted
them to units of return. To do this, we chose to keep the relative
Z -score values between stocks, but convert the distribution to
resemble the first two central moments of the cross-section of
stock returns. Thus, the Z -scores for each stock were modified
as follows:

Z̃i t = Zitσr t + μr t (12)

where Z̃i t is the adjusted Z -score to be used as the alpha
for each stock, σr t and μr t are the cross-sectional standard
deviation and mean of stock returns over the last twelve months
divided by 12 at time t .

Given this conversion of Z -scores towards the cross-sectional
stock distribution of returns, we then compute the after trans-
action costs for a given stock as:

α̃i t = Z̃i twi t − ̂̃tcit = Z̃i twi t − âi twi t − b̂i tw
2
i t (13)

where α̃i t is the after-transaction cost alpha for stock i at time t ,
wi t is the weight in stock i at time t , and ̂̃tcit are the approximate
transaction costs from the regression equations.§

An example of this conversion of Z -scores is shown in figure
1 for the December 2013. The first graph in figure 1 shows the
distribution of the Z -scores amongst 2000 stocks according
to a particular Z -score model. The second graph shows the
distribution of stock returns for the same stocks. The third

†Other values for the upper and lower bound could be chosen by using
1.5 instead of 3. It is common to use both.
‡This procedure works quite well at dealing with outlier data. For
example, in December 2013, the raw data for the 5-year beta of
company stock returns, ranged from −9, 022 to 943. The values for
the IQR procedure were Q3 = −0.65, Q1 = −1.58, I Q R = 0.93,
U B = 2.14, and L B = −4.37. This procedure removed 2.43% of
all of our cross-sectional data, but left us with very stable Z -score
values for 97.57% of our stock data. Some researchers might use
windzorization techniques. The idea of windsorization is to compute
the Z -scores for all stocks, then force the stocks with signals of Z -
score greater that absolute value of 3, we force them to be 3 or −3.
Then recompute the Z -scores for remaining stocks. Although this
seems satisfactory, it does not really work, because even after the cut
off, there may be still a group of outliers, thus an iterative process is
needed. This can take time and can be less than efficient.
§These are described in section 4.4.

graph shows the distribution of the modified Z -scores adjusted
for the mean and standard deviation of the cross-section of
stock returns. In this particular example, the mean and standard
deviation of the cross-section of stock returns are 4.22% and
4.71%. The mean and standard deviation of the Z -scores are
0 and 1 and the modified Z -scores have the same mean and
standard deviation as the stock returns.

3.3. The risk models

Crucial to the portfolio management process is the use of a risk
model for the securities. In order to understand how crowding
occurs in the financial system from the portfolio construction
process, we used the leading risk models in the industry to
build portfolios.¶

Most professional money managers use standard third-party
risk models to manage their portfolios. The most well-known
risk models are that of MSCI-Barra, Northfield, and Axioma.‖
In this paper, we use the Barra US Equity Model (USE4) which
has been active since 30 June 1995.†† We also use Northfield’s
US Fundamental Equity Risk Model which has been active
since 30 January 1990.‡‡ Finally, we use Axioma’s Robust
Risk Model for the US which has been active since 4 January
1982.§§ Barra is believed to lead most providers with around
a 50% market share.

All of these risk models are multi-factor models. That is,
these factor models assume that asset returns can be modelled
as a linear combination of common risk factors (Ross 1976,
Chincarini and Kim 2006). The three risk models differ by
the factors chosen and other estimation techniques. We use
the three prominent risk models in the industry to reconstruct
the variance–covariance matrix of asset returns that real-world
portfolio managers would be using to build their optimal port-
folios so that we can get an accurate estimation of the crowding
that may or may not occur through the portfolio construction
process.

4. Transaction cost models

Transaction costs are broken down into two categories. These
include fixed costs (or those easily observed in the market

¶In order to allow for comparisons across risk models, we match all
data across risk model providers and the top 2000 stocks by market
capitalization every month of the analysis. We matched the data by
CUSIP identification.
‖The majority of asset managers use either Barra, Northfield,
or Axioma and thus are a very representative group (Fabozzi
et al. 2007, Fabozzi and Markowitz 2011). Other providers
include APT and R-squared. APT’s Market Risk Model for
the US has been active since January 2000. For more info,
see http://www.sungard.com/campaigns/fs/alternativeinvestments/
apt/solutions/apt_market_risk_models.aspx. R-Squared Customized
Hybrid Risk Model (CHRM) has been active since June 29th,
2007. For more info, see http://www.rsquaredriskmanagement.com/
Customised-Hybrid-Risk-and-Return-Models.
††For more info, see http://www.msci.com/products/portfolio_
management_analytics/equity_models/barra_us_equity_model_
use4.html. BARRA has another popular risk model , the Barra US
Equity Model (USE3), which has been active since 1973.
‡‡For more info, see http://www.northinfo.com/documents/8.pdf.
§§For more info, see http://axioma.com/robust.htm.

http://www.sungard.com/campaigns/fs/alternativeinvestments/apt/solutions/apt_market_risk_models.aspx
http://www.sungard.com/campaigns/fs/alternativeinvestments/apt/solutions/apt_market_risk_models.aspx
http://www.rsquaredriskmanagement.com/Customised-Hybrid-Risk-and-Return-Models
http://www.rsquaredriskmanagement.com/Customised-Hybrid-Risk-and-Return-Models
http://www.msci.com/products/portfolio_management_analytics/equity_models/barra_us_equity_model_use4.html
http://www.msci.com/products/portfolio_management_analytics/equity_models/barra_us_equity_model_use4.html
http://www.msci.com/products/portfolio_management_analytics/equity_models/barra_us_equity_model_use4.html
http://www.northinfo.com/documents/8.pdf.
http://axioma.com/robust.htm


6 L. B. Chincarini

place) and variable costs (those that are less observable and
therefore require more modelling to estimate).

Fixed transaction costs will typically include a per share
commission that the manager must pay to the broker to execute
the trades. It is reasonable to estimate a cost of $0.005 per share
for commissions.Additionally, there is the issue of the bid/offer
spread. Since we know that market makers make money on
trades through the spread, it is reasonable to assume that a
manager will pay the offer on purchases and receive the bid
for sales. These costs are assumed to be more or less constant
costs that do not vary much with the size of the trade.

Variable transaction costs will typically include an estimate
of the likely impact of the size of the trade on the price. There
is a positive relationship between the size of a trade and market
impact. However, the relationship is not always linear. As
trades increase in size up to and beyond a certain threshold,
the estimated market impact will increase at an increasing rate.
For example, a trade that is two times the average daily trading
volume (ADTV) is likely to have more than two times the
market impact as a trade that is equal to the ADTV.

Transaction costs have the potential to contribute to crowd-
ing. Whilst the fixed costs are not likely to vary with the size
of the trade, the variable costs will vary and can affect the
final positions. For large portfolios, the transaction costs for
assets with low ADTV are likely to be high and the positive
gross alphas will become smaller (and possibly even negative)
after transaction costs. The final portfolios are less likely to
include these names. For assets with higher ADTV, more of
the positive gross alpha will translate into positive net alpha
and we are more likely to see these names included in the final
portfolios. When multiple managers use the same transaction
cost model, there may be crowding in liquid assets.

4.1. Model 1

In order to study the impacts of the transaction costs or market
impact models on crowding, we use two market impact models.
The first model is a structural model estimated from US equity
data (Almgren et al. 2005). The model for market impact on
trading is given by:†

cit = I

2
+ sgn(nit )ησi t

∣∣∣∣ nit

Vit T

∣∣∣∣3/5

(14)

where I = γ σi t
nit
Vit

(
Nit
Vit

)1/4
, γ = 0.314, η = 0.142, σi t is the

daily volatility of stock return i at the beginning of month t ,
Nit is the total amount of shares outstanding in the security, Vit

is the average daily trading volume of the stock (shares traded,
not dollars traded), sgn() is a function that is -1 if shares are
being sold and 1 is shares are being bought, T is the time
interval in which the trade takes place in number of days, for
this paper we use T = 1, and nit represents the number of
shares of the security the portfolio is trading.‡

†For the purposes of this paper, the preciseness of the transaction cost

model is not crucial. Any model of the form, cit = s
2 + nit

Vit

φ
ψ will be

sufficient, where s is the bid-ask spread and φ and ψ are parameters
that need to be estimated.
‡The parameter symbols have been changed from the original paper
so as to be more consistent with symbols in this paper.

4.2. Model 2

The second model is the Northfield model for transaction costs
which has been available since March 2009 (see Northfield
(2015)). This model of market impact is estimated every month
by Northfield with dynamically generated parameters for each
stock. The model is of the form,

cit = Bit |nit | + Cit |nit |0.5 (15)

where Bit and Cit are parameters estimated by Northfield, nit

is the number of shares to be purchased for security i in month
t , and cit is expressed in terms of percentage price movement.§

4.3. Spreads

For both market impact models, we add the percentage spread
cost of trading, by adding a term equal to the bid-ask spread
divided by 2 divided by the current stock price multiplied by
100. Thus, the final transaction cost model is given by,

tcit = Cit +
∣∣∣∣100sit/2

pit

∣∣∣∣ + |cit | (16)

where Cit is the percentage commission cost from the trade,
sit is the bid-ask spread of stock i at time t , pit is the price of
stock i at time t , and cit is the market-impact costs for stock
i at time t based on one of the two market impact models.
These transaction costs, tcit are in percentage points. Since
commission costs are typically small for institutional investors
and typically a constant value, they will not be important for
the analysis in this paper, thus we will assume they are zero
throughout the paper.

For example, for December 2013, take two stocks, AT&T
(Ticker Symbol: T), a very liquid stock, and AGL Resources
(Ticker Symbol: GAS), a less liquid stock. AT&T for this
particular period had a market capitalization of $183 billion,
a stock price of $35.16, and a 10-day average daily trading
volume of 18,930,000 shares. The spread was 1 cent or a
0.0284% spread. The trading costs in percentage terms for a
1% position in a $500 million portfolio was 0.0232%. That is,
a $5 million trade of AT&T representing 142,000 shares would
cost the trader $1,160. This does not represent commissions, it
is simply the market impact and spread costs. AGL Resources
for this particular period had a market capitalization of $5.6
billion, a stock price of $47.23, and a 10-day average daily
trading volume of 490,000 shares. The spread was 2 cents or
a 0.0423% spread. The trading costs in percentage terms for
a 1% position in a $500 million portfolio was 0.1621%. That
is, a $5 million trade of AGL Resources representing 105,865
shares would cost the trader $8,105.

4.4. Approximation of transaction costs for optimization
model

The transaction cost models used in this paper are difficult
to use in a standard optimization framework. In the case of
transaction cost model 1, it is not usable even in the leading
software provider platforms for portfolio optimization, like

§Northfield prefers to use the symbol Sit to represent the shares traded.
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Figure 1. Conversion of Z -scores to Modified Z -scores using December 2013 data. In this figure, μr = 4.22, σr = 4.71, μZ = 0, σZ = 1,
and μZ̃ = 4.22, and σZ̃ = 4.71. The means and standard deviations are from a cross-section of monthly stock returns.

Axioma, Northfield, and BARRA.¶ In this paper, we present
an easy-to-execute and remarkably reliable approximation to
transaction costs, which could prove useful for practitioners
needing to deal with a variety of transaction cost models.
First, the transaction costs are computed for each stock in the
portfolio by varying the portfolio weight of each stock from
zero to 0.10 (the maximum possible value for any stock in the
portfolio) for each net asset level. Second, a regression is run
on each stock of the following form:

t̃ ci t = aitwi t + bitw
2
i t (17)

where t̃ ci t is a vector of net transaction costs from the transac-
tion model corresponding to each stock’s particular weight, ait

and bit are parameters estimated from the linear regression.†
That is, t̃ ci t represents the percentage transaction cost of each
stock multiplied by the stock’s weight, wi t , representing the
net transaction cost impact of each stock at each weight to the
entire portfolio.

This approximation model works extremely well for all
stocks.‡ For example, the maximum and minimum R̄2 for

¶When we began working on this paper, we considered partnering
with the research staff at Axioma and the research staff of other
commercial portfolio optimization software providers to alleviate the
work load. However, they informed us that their systems would have
trouble incorporating certain transaction cost models, like transaction
cost model 1. BARRA and Bloomberg also do not support such a
functional form, although they can be tweeked to approximate the
costs within a given range of trade size.
†There is a different ait and bit for every net asset level, since the
transaction costs of each stock vary with assets under management.
‡The Weierstrass approximation theorem states that every continuous
function defined on a closed interval [a, b] can be uniformly
approximated as closely as desired by a polynomial function. In the
case of the transaction costs functions used in this paper, a quadratic
function is sufficient for a very good approximation. This is achieved

all stocks in December 2013 is 1 and 0.9998, respectively.
The approximate cost model works very well at estimating
the transaction costs of each stock. Figure 2 shows the actual
transaction costs and approximate transaction costs for AT&T
for December 2013. The approximation is excellent with α̂ =
0.0206, β̂ = 0.5096, and R̄2 = 0.9999. Figure 3 shows the
actual and approximate transaction costs for AGL Resources.
The approximation is excellent with α̂ = 0.0697, β̂ = 0.1110,
and R̄2 = 0.9999.

5. Empirical simulation

5.1. Methodology

Given these realistic portfolio construction techniques desc-
ribed in the previous sections, we constructed 100 optimal
portfolios for every risk model and for every month in our
sample period from a security universe of the largest 2000
publicly traded stocks in the United States over the period
2006–2013.§ In every month of the sample, each portfolio
was constructed from 2000 random alpha signals. That is,
for every one of the 100 portfolios constructed, 2000 random
alpha signals were created. In addition to the random alpha
signals, we also created a universe of factor portfolios in which
one-third of the portfolio alphas were generated based on the
value factor, one-third were generated based on the momentum

by transforming the concave transaction cost functions into convex
functions by multiplying transaction costs by the weights, w. That is,
t̃ ci t = w · tci t . This is done in order to construct an approximate
transaction cost function that will work with a slightly modified
quadratic optimization problem with quadratic constraints.
§This security universe was updated every month in our sample period
between 2006 and 2013.



8 L. B. Chincarini

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

7

8
x 10−3

Weight of Security

Tr
an

sa
ct

io
n

C
os

ts
(t

c)

 

 

Actual Costs Approximate Costs

Figure 2. Actual trading costs with approximate trading costs for AT&T. This figure shows the trading costs, t̃ c, using transaction cost model
1 for December 2013.
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Figure 3. Actual trading costs with approximate trading costs for AGL Resources. This figure shows the trading costs, t̃ c, using transaction
cost model 1 for December 2013.

factor, and one-third were generated based on the low-beta
factor.

For each group of portfolios, four market scenarios were
considered. In scenario 1, all of the portfolios were constructed
without considering transaction costs. In scenario 2, each port-
folio was assumed to have a total of $500 million in assets
under management (AUM). In scenario 3, each portfolio was
assumed to have a total of $5 billion in AUM. In scenario 4,
each portfolio was assumed to have a value of $20 billion in
AUM. Since the market impact (a primary driver of transaction
costs) is driven by the size of the trades, adjusting the value of

the portfolios from $500 million to $20 billion in AUM allows
for a comparison of how transaction costs affect crowding
during the portfolio construction process. The transaction costs
are estimated for every stock and the approximation parameters
are re-estimated for every size scenario, since they naturally
would change as the portfolio size changes. The portfolios are
rebalanced once per month.† For each scenario, the optimal
portfolio weights were stored for all 100 portfolios in every

†Portfolio managers may not trade as often or as strictly as the
simulation does, however, the point of the research is to examine
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month for the random alpha portfolios. The factor portfolios
optimal weights were also stored every month. These weights
were used to measure crowding in each of the four scenarios.

Our analysis of these simulated portfolios covered the period
2006–2013 for transaction cost model 1 and March
2009–2013 for transaction cost model 2.† The reason that we
used a different time period for transaction cost model 2 is that
it was created by Northfield in 2009 and did not exist prior to
this date.

5.2. Random alpha results

Tables 1 and 2 report the crowding measures by optimization
framework (e.g. Long-only portfolio), by risk model 1, 2 or
3, with and without transaction costs, and by average size
of the portfolio.‡ We also show in the tables, the maximum
weight in any given portfolio, the minimum weight in any given
portfolio, and the average number of stocks in the portfolios
that are constructed. We split the analysis into two periods since
one transaction cost model only existed from March 2009 until
2013.

For both periods, 2006–2009 and 2009–2013, independent
of the risk model used, as the average portfolio size increased
from $500 million with no transaction costs to $5 billion with
transaction costs, the average crowding declined. For example,
for the period 2006–2009, using risk model 1, when long port-
folios were constructed without considering transaction costs,
the crowding in the system was 0.58 (see column 2, row 3 of
table 1). For portfolios of size $500M, crowding declined to
0.49 (see column 2, row 5), for portfolios of size $5B, crowding
dropped further to 0.42 (see column 2, row 7), and for portfolios
of size $20B, crowding was 0.50 (see column 2, row 9). This
same pattern can be seen for portfolios constructed with the
other two risk models. In particular, for risk model 2, the
respective crowding numbers are 0.60, 0.45, 0.38 and 0.43 (see
column 8, rows 3, 5, 7 and 9). For risk model 3, the respective
crowding numbers are 0.59, 0.46, 0.38 and 0.46 (see column
14, rows 3, 5, 7 and 9). The market neutral portfolios do not
show a significant change in crowding, as most of the measures
of crowding are equal to 0. The omega value of crowding
shows that crowding only starts to increase for market neutral
portfolios at a portfolio value of $20B (compare column 3, row
2 to column 3, row 8).

A similar pattern can be seen in table 2 covering the period
2009–2013 and using an additional transaction cost model to
form portfolios. For example, for the period 2009–2013, using
risk model 1, crowding declines from 0.37 without considering
transaction costs to 0.29 when considering transaction costs

how portfolio construction and transaction costs affect crowding and
thus a controlled setting is required.
†We have data for a longer time period, but the simulations take an
enormous amount of time to compute and thus we limited our sample
from 2006 to 2013. For example, the 100 random alpha portfolios can
take 20 days to complete one historical year of analysis when running
on 12 processors in parallel.
‡The empirical testing of the crowding induced by risk models
was extremely complicated. In order to dynamically simulate the
portfolios, we had to create an entire program to do professional
portfolio optimization. We used MATLAB 2014a and CPLEX from
IBM through the MATLAB API to perform the empirical analysis.

for an average portfolio size of $5B (see column 2, and rows
3 and 7 of table 2). Even when the average portfolio size is
$20B, crowding is at 0.38 (see column 2, row 9), which is
about the same level as when portfolios are constructed without
considering transaction costs. The same pattern emerges when
using transaction cost model 2, as crowding declines to 0.34,
0.30 and 0.26 for average portfolio sizes $500M, $5B, and
$20B (see column 2, rows 11,13, and 15). A similar pattern
can also be seen in table 2 when using risk models 2 and 3 (see
columns 8 and 14). Thus, for both market neutral and long-only
portfolios, crowding declines as the average portfolio grows in
size from $500M to $5B.

Crowding amongst managers only starts to increase when
the average size of the portfolio moves from $5 billion to $20
billion. Even in this case, crowding is greater when transaction
costs are not considered at all compared to when they are con-
sidered with portfolios of size $20 billion (see columns 2, 8 and
14 of tables 1 and 2). For example, from 2006 to 2009, for risk
model 1 and long-only portfolios, crowding is 0.58 with $500
million dollar portfolios and no transaction costs and 0.50 with
portfolios of $20 billion in size when considering transaction
costs. For risk model 2 and risk model 3, the numbers are
0.60 and 0.43 and 0.59 and 0.46, respectively. The qualitative
results are similar for the period 2009–2013 and also similar
for both transaction cost model 1 and 2. Thus, the average
crowding for long portfolios declines as portfolios get large,
even though transaction costs are increasing.

In order to establish statistical significance, we also tested
whether the average crowding with transaction costs was sig-
nificantly different than when not considering transaction costs.
In almost all cases, the average crowding when considering
transaction costs was significantly lower than not considering
transaction costs at the 99% confidence level. In tables 1 and
2, this is indicated by ∗∗∗ (99% confidence level) and ∗∗ (95%
confidence level). We also tested whether the average crowding
from portfolios with $20 billion and hence more transaction
costs was significantly smaller than portfolios with $500 mil-
lion in assets, and found that it was for risk models 2 and 3
of the long-only portfolios during the period 2006–2009, but
only for risk model 2 during the period 2009–2013.

The crowding measure for market neutral portfolios was
generally much smaller than for long-only portfolios. In fact,
in most cases, to two decimal points, it was 0.00. Thus, in order
to examine the effect of transaction costs on market neutral
portfolios, we focused mainly on the measure of omega (�).
Omega measures the crowding of the constructed portfolio to
the crowding of the random alpha signals. Thus, a value greater
than 1 indicates that the portfolio construction process led to
more crowding than the alpha signals amongst portfolios. The
higher the value of omega, the more crowding that occurs from
portfolio construction.

For market neutral portfolio managers of size $500 million to
$5 billion, relative crowding (�) decreases when considering
transaction costs.As the average portfolio size increases to $20
billion, relative crowding is generally higher than portfolios of
smaller size for the period 2006–2009, but once again lower for
the period 2009–2013. For example, for the period 2006–2009,
the average relative crowding is almost double for a portfolio
of size $20 billion than for portfolios that do not consider
transaction costs using risk models 1 and 3 (see columns 3 and



10 L. B. Chincarini

Ta
bl

e
1.

Su
m

m
ar

y
of

cr
ow

di
ng

fr
om

ra
nd

om
al

ph
a

m
od

el
s

an
d

tr
an

sa
ct

io
n

co
st

s
fr

om
20

06
to

Fe
br

ua
ry

20
09

.

R
is

k
m

od
el

1
R

is
k

m
od

el
2

R
is

k
m

od
el

3

C
O

m
eg

a
SR

M
ax

M
in

N̄
C

O
m

eg
a

SR
M

ax
M

in
N̄

C
O

m
eg

a
SR

M
ax

M
in

N̄

A
lp

ha
−0
.0

0
L

on
g-

on
ly

M
N

N
T

C
−0
.0

0
0.

75
−3

70
8.

35
2

0.
00

4
−0
.0

04
64

5
−0
.0

0
0.

84
−2

43
7.

77
0.

00
5

−0
.0

05
61

1
0.

00
0.

50
−3

29
6.

92
0.

00
6

−0
.0

1
63

2
L

O
N

G
N

T
C

0.
58

−1
41
.2

6
−1

40
.9

11
0.

07
6

0.
00

0
63

0.
60

−1
81
.9

0
−1

75
.4

8
0.

07
2

0.
00

0
75

0.
59

−1
56
.6

2
−1

84
.2

2
0.

07
9

0.
00

64
Po

rt
.S

iz
e

($
50

0M
)

M
N

T
C

1
−0
.0

0
0.

27
−8
.1

71
0.

00
7

−0
.0

06
56

7
0.

00
−0
.0

4
−7
.8

4
0.

00
6

−0
.0

06
54

3
0.

00
0.

11
−7
.4

9
0.

00
9

−0
.0

1
55

6
L

O
N

G
T

C
1

0.
49

−1
27
.7

7
−0
.5

12
0.

07
9

0.
00

0
67

0.
45

∗∗
−1

23
.7

7
−1
.0

0
0.

07
1

0.
00

0
89

0.
46

∗∗
−1

16
.8

6
−0
.8

4
0.

08
0

0.
00

71
Po

rt
.S

iz
e

($
5B

)
M

N
T

C
1

0.
00

0.
63

−1
5.

02
7

0.
00

7
−0
.0

07
52

7
0.

00
0.

10
−1

3.
88

0.
01

0
−0
.0

11
51

4
0.

00
0.

47
−1

3.
98

0.
00

9
−0
.0

1
51

9
L

O
N

G
T

C
1

0.
42

∗∗
∗

−9
1.

04
−1
.4

27
0.

07
7

0.
00

0
10

2
0.

38
∗∗

∗
−1

13
.7

4
−1
.5

9
0.

07
2

0.
00

0
13

8
0.

38
∗∗

∗
−1

11
.1

1
−1
.7

1
0.

07
7

0.
00

11
4

Po
rt

.S
iz

e
($

20
B

)
M

N
T

C
1

0.
00

1.
42

−2
1.

24
0

0.
01

3
−0
.0

13
15

7
0.

00
0.

09
−2

0.
03

0.
01

4
−0
.0

14
45

6
0.

00
1.

13
−2

0.
05

0.
01

4
−0
.0

1
46

0
L

O
N

G
T

C
1

0.
50

29
4.

63
−2
.1

52
0.

07
2

0.
00

0
15

7
0.

43
∗∗

∗
15

1.
19

−2
.2

6
0.

06
4

0.
00

0
21

7
0.

46
∗∗

∗
24

1.
19

−2
.3

3
0.

07
2

0.
00

17
6

N
ot

es
:T

hi
s

ta
bl

e
pr

es
en

ts
va

ri
ou

s
cr

ow
di

ng
m

ea
su

re
s

fr
om

th
e

co
ns

tr
uc

te
d

po
rt

fo
lio

s
us

in
g

va
ri

ou
s

po
rt

fo
lio

op
tim

iz
at

io
n

st
ru

ct
ur

es
th

at
m

in
im

iz
e

vo
la

til
ity

us
in

g
va

ri
ou

s
ri

sk
m

od
el

s
ov

er
th

e
pe

ri
od

20
06

to
Fe

br
ua

ry
20

09
.

R
is

k
M

od
el

1,
2

an
d

3
re

pr
es

en
tl

ea
di

ng
ri

sk
m

od
el

s
us

ed
in

th
e

in
du

st
ry

.T
he

na
m

es
ar

e
pu

rp
os

el
y

om
itt

ed
so

as
to

no
ti

de
nt

if
y

an
y

pa
rt

ic
ul

ar
ri

sk
m

od
el

.A
ll

nu
m

be
rs

in
th

e
fig

ur
e

ar
e

av
er

ag
es

of
va

ri
ou

s
va

ri
ab

le
s

co
ns

tr
uc

te
d

fr
om

m
on

th
ly

po
rt

fo
lio

s.
T

he
co

m
pu

ta
tio

ns
ar

e
ba

se
d

on
10

0
po

rt
fo

lio
s

fo
rm

ed
fr

om
ra

nd
om

al
ph

a
si

gn
al

s.
C

re
pr

es
en

ts
ou

rc
ro

w
di

ng
m

ea
su

re
as

de
sc

ri
be

d
in

th
e

pa
pe

r,
C

=
∑ M i=

1

∑ M j=
1

S
p:i
,
j
−

M

M
2
−M

.�
m

ea
su

re
s

th
e

re
la

tiv
e

cr
ow

di
ng

be
tw

ee
n

ra
nd

om
si

gn
al

s
an

d
ac

tu
al

po
rt

fo
lio

s,
�

=
∑ M i=

1

∑ M j=
1

S
p:i
,
j
−

M
∑ M i=

1

∑ M j=
1

S α
:i,

j
−

M
.A

hi
gh

er
va

lu
e

m
ea

ns
th

at
ri

sk
m

od
el

cr
ea

te
s

m
or

e
cr

ow
di

ng
.S
.R
.

is
a

ps
eu

do
-S

ha
rp

e
ra

tio
fo

r
ea

ch
po

rt
fo

lio
de

fin
ed

as
th

e
po

rt
fo

lio
’s

an
nu

al
iz

ed
fo

rw
ar

d
on

e-
m

on
th

re
tu

rn
m

in
us

tr
an

sa
ct

io
n

co
st

s
di

vi
de

d
by

its
ex

-a
nt

e
st

an
da

rd
de

vi
at

io
n.

M
ax

re
pr

es
en

ts
th

e
m

ed
ia

n
of

th
e

m
ax

im
um

w
ei

gh
t

of
an

y
po

rt
fo

lio
ov

er
al

l
m

on
th

s,
M

in
re

pr
es

en
ts

th
e

m
ed

ia
n

of
th

e
m

in
im

um
w

ei
gh

to
f

an
y

po
rt

fo
lio

ov
er

al
lm

on
th

s,
an

d
N

re
pr

es
en

ts
th

e
av

er
ag

e
nu

m
be

r
of

st
oc

ks
ac

ro
ss

po
rt

fo
lio

s
in

an
y

gi
ve

n
m

on
th

ov
er

al
lm

on
th

s.
T

he
op

tim
iz

at
io

ns
re

pr
es

en
to

pt
im

iz
at

io
ns

w
hi

ch
at

te
m

pt
to

m
in

im
iz

e
th

e
va

ri
an

ce
of

th
e

po
rt

fo
lio

su
bj

ec
tt

o
a

ta
rg

et
al

ph
a

su
bj

ec
tt

o
va

ri
ou

s
co

ns
tr

ai
nt

s
as

ex
pl

ai
ne

d
in

th
e

pa
pe

r.
Tw

o
tr

an
sa

ct
io

n
co

st
m

od
el

s
ar

e
co

ns
id

er
ed

,m
od

el
1

(T
C

1)
an

d
m

od
el

2
(T

C
2)

.T
he

tr
an

sa
ct

io
n

co
st

s
in

cl
ud

e
sp

re
ad

s

an
d

m
ar

ke
ti

m
pa

ct
of

th
e

fo
llo

w
in

g
fo

rm
:t

c i
t
=

∣ ∣ ∣10
0s

it
/
2

p i
t

∣ ∣ ∣+|
c i

t|,
w

he
re

s i
t

is
th

e
bi

d-
as

k
sp

re
ad

of
st

oc
k

i
at

tim
e

t.
Fo

r
m

od
el

1,
c i

t
=

I 2
+

sg
n(

n i
t)
η
σ

it

∣ ∣ ∣n i
t

V
it

T

∣ ∣ ∣3/
5
,w

he
re

I
=
γ
σ

it
n i

t
V

it

( N
it

V
it

) 1/4
,γ

=
0.

31
4,
η

=
0.

14
2,
σ

it

is
th

e
da

ily
vo

la
til

ity
of

st
oc

k
re

tu
rn

i
at

th
e

be
gi

nn
in

g
of

m
on

th
t,

N
it

is
th

e
to

ta
la

m
ou

nt
of

sh
ar

es
ou

ts
ta

nd
in

g
in

th
e

se
cu

ri
ty

,V
it

is
th

e
av

er
ag

e
da

ily
tr

ad
in

g
vo

lu
m

e
of

th
e

st
oc

k,
T

is
th

e
tim

e
in

te
rv

al
in

w
hi

ch
th

e
tr

ad
e

ta
ke

s
pl

ac
e

in
nu

m
be

r
of

da
ys

,f
or

th
is

pa
pe

r
w

e
us

e
T

=
1,

an
d

n i
t

re
pr

es
en

ts
th

e
nu

m
be

r
of

sh
ar

es
of

th
e

se
cu

ri
ty

th
e

po
rt

fo
lio

is
tr

ad
in

g.
Fo

r
m

od
el

2,
c i

t
=

B
it

|n i
t|+

C
it

|n i
t|0.

5
,w

he
re

B
it

an
d

C
it

ar
e

pa
ra

m
et

er
s

es
tim

at
ed

by
N

or
th

fie
ld

,n
it

is
th

e
nu

m
be

r
of

sh
ar

es
to

be
pu

rc
ha

se
d

fo
r

se
cu

ri
ty

i
in

m
on

th
t,

an
d

c i
t

is
ex

pr
es

se
d

in
te

rm
s

of
pe

rc
en

ta
ge

pr
ic

e
m

ov
em

en
t.

M
od

el
2

ex
is

ts
on

ly
si

nc
e

M
ar

ch
20

09
.∗

∗∗
,∗

∗ i
nd

ic
at

es
th

e
a

99
an

d
95

%
si

gn
ifi

ca
nt

di
ff

er
en

ce
re

sp
ec

tiv
el

y
in

th
e

av
er

ag
e

cr
ow

di
ng

fr
om

th
is

po
rt

fo
lio

an
d

a
po

rt
fo

lio
th

at
do

es
n’

tc
on

si
de

r
tr

an
sa

ct
io

n
co

st
s.

M
N

is
fo

r
th

e
m

ar
ke

tn
eu

tr
al

po
rt

fo
lio

s
an

d
L

O
N

G
is

fo
r

th
e

lo
ng

po
rt

fo
lio

s.



Transaction costs and crowding 11

Ta
bl

e
2.

Su
m

m
ar

y
of

cr
ow

di
ng

fr
om

ra
nd

om
al

ph
a

m
od

el
s

an
d

tr
an

sa
ct

io
n

co
st

s
fr

om
M

ar
ch

20
09

to
20

13
.

R
is

k
m

od
el

1
R

is
k

m
od

el
2

R
is

k
m

od
el

3

C
O

m
eg

a
SR

M
ax

M
in

N̄
C

O
m

eg
a

SR
M

ax
M

in
N̄

C
O

m
eg

a
SR

M
ax

M
in

N̄

A
lp

ha
0.

00
L

on
g-

on
ly

M
N

N
T

C
−0
.0

0
27
.1

1
−4

2.
64

6
0.

00
6

−0
.0

06
74

7
−0
.0

0
55
.1

4
−6

0.
02

0.
00

8
−0
.0

08
73

1
−0
.0

0
62
.9

8
−3

2.
70

0.
00

8
−0
.0

1
73

6
L

O
N

G
N

T
C

0.
37

−1
99

58
.7

4
−1
.1

23
0.

09
0

0.
00

0
44

0.
41

−2
49

10
.5

2
−8
.0

3
0.

08
7

0.
00

0
48

0.
39

−2
15

22
.8

0
−4
.1

3
0.

09
2

0.
00

46
Po

rt
.S

iz
e

($
50

0M
)

M
N

T
C

1
−0
.0

0
26
.2

3
−7
.1

32
0.

00
7

−0
.0

08
66

3
−0
.0

0
27
.7

0
−6
.6

6
0.

00
9

−0
.0

09
65

2
−0
.0

0
57
.8

3
−6
.5

1
0.

01
0

−0
.0

1
65

2
L

O
N

G
T

C
1

0.
32

−1
78

43
.5

8
0.

79
4

0.
09

0
0.

00
0

50
0.

27
∗∗

∗
−1

64
34
.6

6
0.

32
0.

08
5

0.
00

0
66

0.
31

∗∗
−1

60
26
.4

3
0.

53
0.

09
1

0.
00

56
Po

rt
.S

iz
e

($
5B

)
M

N
T

C
1

−0
.0

0
26
.7

4
−1

4.
66

9
0.

00
9

−0
.0

09
59

4
−0
.0

0
19
.8

7
−1

3.
70

0.
01

2
−0
.0

12
58

8
−0
.0

0
51
.5

0
−1

3.
61

0.
01

2
−0
.0

1
58

6
L

O
N

G
T

C
1

0.
29

∗∗
∗

−1
55

81
.7

0
0.

16
7

0.
08

8
0.

00
0

77
0.

25
∗∗

∗
−1

37
58
.3

0
−0
.0

8
0.

08
2

0.
00

0
10

6
0.

27
∗∗

∗
−1

44
62
.4

4
−0
.0

4
0.

08
8

0.
00

92
Po

rt
.S

iz
e

($
20

B
)

M
N

T
C

1
−0
.0

0
40
.6

2
−2

2.
27

5
0.

01
3

−0
.0

13
12

2
−0
.0

0
27
.9

7
−2

0.
73

0.
01

5
−0
.0

16
50

3
−0
.0

0
45
.2

8
−2

1.
27

0.
01

5
−0
.0

2
50

2
L

O
N

G
T

C
1

0.
38

−6
86

2.
70

−0
.4

91
0.

08
2

0.
00

0
12

2
0.

32
∗∗

∗
−7

21
7.

42
−0
.6

6
0.

07
5

0.
00

0
15

9
0.

36
−6

53
9.

03
−0
.6

6
0.

08
2

0.
00

14
4

Po
rt

.S
iz

e
($

50
0M

)
M

N
T

C
2

−0
.0

0
29
.8

3
−7
.3

46
0.

00
7

−0
.0

07
65

5
−0
.0

0
45
.1

6
−6
.4

4
0.

00
9

−0
.0

09
64

4
−0
.0

0
60
.4

2
−6
.7

3
0.

01
0

−0
.0

1
64

4
L

O
N

G
T

C
2

0.
34

−1
79

64
.1

6
0.

96
0

0.
09

1
0.

00
0

43
0.

33
∗∗

∗
−2

05
77
.4

8
0.

51
0.

08
8

0.
00

0
47

0.
33

−1
66

35
.1

4
0.

80
0.

09
3

0.
00

44
Po

rt
.S

iz
e

($
5B

)
M

N
T

C
2

−0
.0

0
28
.7

6
−1

3.
43

8
0.

00
9

−0
.0

09
59

1
−0
.0

0
30
.4

7
−1

1.
91

0.
01

1
−0
.0

11
58

3
−0
.0

0
58
.9

3
−1

2.
31

0.
01

1
−0
.0

1
58

1
L

O
N

G
T

C
2

0.
30

∗∗
−1

60
88
.3

5
0.

55
8

0.
09

1
0.

00
0

45
0.

27
∗∗

∗
−1

60
26
.4

3
0.

06
0.

08
6

0.
00

0
52

0.
28

∗∗
∗

−1
40

02
.9

1
0.

30
0.

09
2

0.
00

47
Po

rt
.S

iz
e

($
20

B
)

M
N

T
C

2
−0
.0

0
28
.3

9
−1

9.
12

4
0.

01
0

−0
.0

10
51

3
−0
.0

0
1.

88
−1

7.
08

0.
01

3
−0
.0

13
50

6
−0
.0

0
56
.0

5
−1

7.
56

0.
01

4
−0
.0

1
50

6
L

O
N

G
T

C
2

0.
26

∗∗
∗

−1
44

85
.4

3
0.

15
7

0.
09

1
0.

00
0

49
0.

22
∗∗

∗
−1

23
48
.6

1
−0
.2

5
0.

08
6

0.
00

0
59

0.
24

∗∗
∗

−1
31

75
.7

7
−0
.1

2
0.

09
1

0.
00

53

N
ot

es
:T

hi
s

ta
bl

e
pr

es
en

ts
va

ri
ou

s
cr

ow
di

ng
m

ea
su

re
s

fr
om

th
e

co
ns

tr
uc

te
d

po
rt

fo
lio

s
us

in
g

va
ri

ou
s

po
rt

fo
lio

op
tim

iz
at

io
n

st
ru

ct
ur

es
th

at
m

in
im

iz
e

vo
la

til
ity

us
in

g
va

ri
ou

s
ri

sk
m

od
el

s
ov

er
th

e
pe

ri
od

M
ar

ch
20

09
–2

01
3.

R
is

k
M

od
el

1,
2

an
d

3
re

pr
es

en
tl

ea
di

ng
ri

sk
m

od
el

s
us

ed
in

th
e

in
du

st
ry

.T
he

na
m

es
ar

e
pu

rp
os

el
y

om
itt

ed
so

as
to

no
ti

de
nt

if
y

an
y

pa
rt

ic
ul

ar
ri

sk
m

od
el

.A
ll

nu
m

be
rs

in
th

e
fig

ur
e

ar
e

av
er

ag
es

of
va

ri
ou

s
va

ri
ab

le
s

co
ns

tr
uc

te
d

fr
om

m
on

th
ly

po
rt

fo
lio

s.
T

he
co

m
pu

ta
tio

ns
ar

e
ba

se
d

on
10

0
po

rt
fo

lio
s

fo
rm

ed
fr

om
ra

nd
om

al
ph

a
si

gn
al

s.
C

re
pr

es
en

ts
ou

r
cr

ow
di

ng
m

ea
su

re
as

de
sc

ri
be

d
in

th
e

pa
pe

r,
C

=
∑ M i=

1

∑ M j=
1

S
p:i
,
j
−

M

M
2
−M

.�
m

ea
su

re
s

th
e

re
la

tiv
e

cr
ow

di
ng

be
tw

ee
n

ra
nd

om
si

gn
al

s
an

d
ac

tu
al

po
rt

fo
lio

s,
�

=
∑ m i=

1

∑ m j=
1

S
p:i
,
j
−

m
∑ m i=

1

∑ M j=
1

S α
:i,

j
−

M
.A

hi
gh

er
va

lu
e

m
ea

ns
th

at
ri

sk
m

od
el

cr
ea

te
s

m
or

e
cr

ow
di

ng
.S
.R
.

is
a

ps
eu

do
-S

ha
rp

e
ra

tio
fo

r
ea

ch
po

rt
fo

lio
de

fin
ed

as
th

e
po

rt
fo

lio
’s

an
nu

al
iz

ed
fo

rw
ar

d
on

e-
m

on
th

re
tu

rn
m

in
us

tr
an

sa
ct

io
n

co
st

s
di

vi
de

d
by

its
ex

-a
nt

e
st

an
da

rd
de

vi
at

io
n.

M
ax

re
pr

es
en

ts
th

e
m

ed
ia

n
of

th
e

m
ax

im
um

w
ei

gh
t

of
an

y
po

rt
fo

lio
ov

er
al

l
m

on
th

s,
M

in
re

pr
es

en
ts

th
e

m
ed

ia
n

of
th

e
m

in
im

um
w

ei
gh

to
f

an
y

po
rt

fo
lio

ov
er

al
lm

on
th

s,
an

d
N

re
pr

es
en

ts
th

e
av

er
ag

e
nu

m
be

r
of

st
oc

ks
ac

ro
ss

po
rt

fo
lio

s
in

an
y

gi
ve

n
m

on
th

ov
er

al
lm

on
th

s.
T

he
op

tim
iz

at
io

ns
re

pr
es

en
to

pt
im

iz
at

io
ns

w
hi

ch
at

te
m

pt
to

m
in

im
iz

e
th

e
va

ri
an

ce
of

th
e

po
rt

fo
lio

su
bj

ec
tt

o
a

ta
rg

et
al

ph
a

su
bj

ec
tt

o
va

ri
ou

s
co

ns
tr

ai
nt

s
as

ex
pl

ai
ne

d
in

th
e

pa
pe

r.
Tw

o
tr

an
sa

ct
io

n
co

st
m

od
el

s
ar

e
co

ns
id

er
ed

,m
od

el
1

(T
C

1)
an

d
m

od
el

2
(T

C
2)

.T
he

tr
an

sa
ct

io
n

co
st

s
in

cl
ud

e
sp

re
ad

s

an
d

m
ar

ke
ti

m
pa

ct
of

th
e

fo
llo

w
in

g
fo

rm
:t

c i
t
=

∣ ∣ ∣10
0s

it
/
2

p i
t

∣ ∣ ∣+|
c i

t|,
w

he
re

s i
t

is
th

e
bi

d-
as

k
sp

re
ad

of
st

oc
k

i
at

tim
e

t.
Fo

r
m

od
el

1,
c i

t
=

I 2
+

sg
n(

n i
t)
η
σ

it

∣ ∣ ∣n i
t

V
it

T

∣ ∣ ∣3/
5
,w

he
re

I
=
γ
σ

it
n i

t
V

it

( N
it

V
it

) 1/4
,γ

=
0.

31
4,
η

=
0.

14
2,
σ

it

is
th

e
da

ily
vo

la
til

ity
of

st
oc

k
re

tu
rn

i
at

th
e

be
gi

nn
in

g
of

m
on

th
t,

N
it

is
th

e
to

ta
la

m
ou

nt
of

sh
ar

es
ou

ts
ta

nd
in

g
in

th
e

se
cu

ri
ty

,V
it

is
th

e
av

er
ag

e
da

ily
tr

ad
in

g
vo

lu
m

e
of

th
e

st
oc

k,
T

is
th

e
tim

e
in

te
rv

al
in

w
hi

ch
th

e
tr

ad
e

ta
ke

s
pl

ac
e

in
nu

m
be

r
of

da
ys

,f
or

th
is

pa
pe

r
w

e
us

e
T

=
1,

an
d

n i
t

re
pr

es
en

ts
th

e
nu

m
be

r
of

sh
ar

es
of

th
e

se
cu

ri
ty

th
e

po
rt

fo
lio

is
tr

ad
in

g.
Fo

r
m

od
el

2,
c i

t
=

B
it

|n i
t|+

C
it

|n i
t|0.

5
,w

he
re

B
it

an
d

C
it

ar
e

pa
ra

m
et

er
s

es
tim

at
ed

by
N

or
th

fie
ld

,n
it

is
th

e
nu

m
be

r
of

sh
ar

es
to

be
pu

rc
ha

se
d

fo
r

se
cu

ri
ty

i
in

m
on

th
t,

an
d

c i
t

is
ex

pr
es

se
d

in
te

rm
s

of
pe

rc
en

ta
ge

pr
ic

e
m

ov
em

en
t.

M
od

el
2

ex
is

ts
on

ly
si

nc
e

M
ar

ch
20

09
.∗

∗∗
,∗

∗ i
nd

ic
at

es
th

e
99

%
an

d
95

%
si

gn
ifi

ca
nt

di
ff

er
en

ce
re

sp
ec

tiv
el

y
in

th
e

av
er

ag
e

cr
ow

di
ng

fr
om

th
is

po
rt

fo
lio

an
d

a
po

rt
fo

lio
th

at
do

es
n’

tc
on

si
de

r
tr

an
sa

ct
io

n
co

st
s.

M
N

is
fo

r
th

e
m

ar
ke

tn
eu

tr
al

po
rt

fo
lio

s
an

d
L

O
N

G
is

fo
r

th
e

lo
ng

po
rt

fo
lio

s.



12 L. B. Chincarini

15 of table 1). However, for risk model 2, crowding declines.
For the 2009–2013 period and transaction cost model 1, relative
crowding generally declines as the portfolio grows from $500
million without considering transaction costs to $20 billion.
For risk models 2 and 3, the no transaction cost measure of
relative crowding is 55 and 63 compared to 28 and 45 using
transaction cost model 1 (see columns 9 and 15 and rows 2
and 8). Only for risk model 1 is relative crowding greater for
the $20 billion dollar average portfolio compared to the $500
million dollar average portfolio without transaction costs (see
column 3, rows 3 and 8). Similar implications come from using
transaction cost model 2 over the period 2009–2013.

We also tested for the statistical significance of the differ-
ences in average crowding for market neutral portfolios. We
found no statistical difference in the average crowding. Thus,
although average crowding generally declines with transaction
costs for market neutral portfolios, the lack of significance
implies that transaction costs probably did not play a large role
in crowding at these asset levels.

Figures 4–6 show the way crowding changes over time. For
long-only portfolios, for most of the period between 2006 and
2013, the crowding from the largest portfolios considering
transaction costs (red line) is lower than that of the smaller
portfolios that do not even consider transaction costs (blue
dotted line). However, in 2006 and in 2013, this was reversed
(see figure 4). This general pattern seems to be true for all risk
models used (see figure 6). One will also notice that crowding
amongst the portfolios started to increase just prior to the quant
crisis of August 2007, and continued to increase after the crisis
reaching a peak at about the time of the Lehman Bankruptcy
in September of 2008. There is also a spike in crowding for
portfolios constructed with an average size of $20B between
October and December 2010. It is unclear what may have
caused this, but it may have something to do with diminished
liquidity in many available equity securities.

Figure 5 shows that for most of the time, the relative crowd-
ing for market neutral models without transaction costs is in-
line with large portfolios that consider transaction costs, except
for certain brief periods, where the relative crowding of large
portfolios increases enormously. These particular periods are
driving the average results discussed in the tables.

5.3. Factor model results

Tables 3 and 4 report the crowding measures by optimization
framework (e.g. Long-Only Portfolio), by risk model 1, 2 or
3, with and without transaction costs, for the three realistic
alpha portfolios. One-third of the portfolios used the value
factor for alpha signals, one-third used the momentum factor
for alpha signals, and one-third used the low-beta factor for
alpha signals.† The results are qualitatively similar to what we
found earlier.

For long-only portfolios, crowding is less for portfolios that
are optimized to explicitly consider transaction costs
than those that do not. This is true for both the 2006–2009

†These results add to the previous analysis by examining how alpha
crowding plays into the transaction cost impact. One suggestion for
further work is to create a universe of portfolios managed from 100
or 1000 correlated factor models, but individually distinct.

period and the 2009–2013 period, with small exceptions. For
example, for the 2006–2009 period, the crowding amongst
portfolios due to the alpha models is 0.09 (see column 2, row
1 of table 3). For long-only portfolios, this crowding increased
to 0.52 without considering transaction costs. It declined to
0.48 and 0.46 when the average portfolio size was $500M or
$5B (see column 2, rows 5 and 7). For other risk models, the
crowding declined from 0.42 to 0.37 for risk model 2 and 0.55
to 0.44 for risk model 3 for portfolios of average size $5B (see
columns 8 and 14 and rows 3 and 7).

A similar pattern of declining crowding with transaction
costs is found when studying the period 2009–2013 (see table
4). For example, for risk model 1, the crowding for long-only
portfolios without transaction costs was 0.40, but 0.41 and 0.44
for portfolios of size $500M and $5B (see column 2, rows
3, 5, and 7 of table 4). With average portfolio size of $20B,
crowding did start to increase to 0.52. For risk model 3 and
transaction cost model 2, crowding declined even when the
average portfolio size was $20B (see column 1, rows 11, 13,
and 15). This pattern is similar for risk models 2 and 3 for
long-only portfolios. In these cases, the decline in crowding
was statistically significant in many cases. For example, for
risk model 3 and transaction cost model 2, crowding declined
from 0.46 to 0.38 with an average portfolio size of $5B (see
column 14, rows 3 and 13) and was statistically significant at
the 95% confidence level.

For the market neutral portfolios, the point estimates of
crowding slightly deviated from zero. For the period 2006–
2009, most of the crowding changes from using transaction
cost models were insignificant. Thus, transaction cost models
did not seem to increase or decrease crowding. One exception
was for $20B portfolio sizes for risk model 3 and transaction
cost model 2. In this particular case, crowding actually changed
quite a bit. Over the 2009–2013 period, using risk model 3, the
crowding without transaction costs is 0.02, however, with a
portfolio of size $500M and $5B using transaction cost model
2, it significantly increased to 0.03 (see column 14, rows 2,
10, and 12). This can also be seen using omega which changes
for the same scenario from 0.28 to 0.49 and 0.50, respectively.
Whilst crowding seems to increase with transaction costs for
some market neutral situations, it doesn’t for others. Also, the
magnitude of this increase is rather small; a crowding increase
in from 0.02 to 0.03 is large in percentage terms but not in
absolute terms when considering that crowding ranges from
−1 to 1.

Overall, the evidence when considering portfolios constructed
from realistic factor models, including a value factor, a momen-
tum factor and a beta factor, is that transaction cost models
do not seem to increase crowding. Rather, if transaction cost
models were properly integrated into the portfolio construction
process, they would decrease crowding up to portfolios of
average size $20 billion.

5.4. Implications

The crowding of investment in securities can lead to similar
positions by similar investors that may eventually lead to a
cascade when investors must rebalance their portfolios. Re-
balancing cascades might occur when investors follow similar
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benchmarks (Chinco and Fos 2016), when they follow similar
investing strategies, or even as an unintended consequence of
using similar methods to build portfolios. One of the ways
that portfolios can become very similar is due to the portfolio
construction process, like the use of similar transaction cost
models to manage the direct drag (spreads) and the indirect
drag (market impact) from trading securities. The simulations
in this paper provide evidence that as equity portfolios grow
in size from $500 million each to $5 billion, crowding ac-
tually declines. Thus, for portfolio managers managing less
than $5 billion and using similar transaction cost models and
reasonable portfolio construction parameters, the unintended
crowding from transaction cost models in the equity space may
not be a major concern.

One of the explanations for lower crowding due to transac-
tion costs as portfolios grow from $500 million to $5 billion
is that as market impact costs become larger in a portfolio,
it makes trading large amounts of particular stocks incredibly
costly due to the non-linear nature of market impact costs.
Thus, a portfolio optimizer will find it advantageous, ceteris
paribus, to trade very small amounts of many more stocks.† Of
course, this is absent any particular alpha considerations. This
logical behaviour of the optimizer will result in less crowding
amongst similarly optimized portfolios up to a certain portfolio
size relative to the security universe.‡ However, as the value of
portfolios approaches $20 billion, crowding due to transaction
cost parameters starts to increase and should be of concern.

The results of the paper also suggest that portfolio managers
can alleviate the severity of the unintended crowding by assum-
ing a larger asset size when constructing portfolios. This can be
understood by comparing the $500 million case with the $20
billion case. If portfolio managers construct portfolios using
a larger asset base than their own portfolio value to estimate
transaction costs, this may lead to portfolios constructed that
have less crowding than if they only consider the actual size
of their own portfolios. Considering a larger asset base for
transaction costs in portfolio construction would make sense
if portfolio managers recognize that many similar investors to
themselves might rebalance or trade at a similar time as them.

Some portfolio managers do not even consider transaction
costs in their portfolio construction, which can cause low ex-
post returns as well as unintended crowding. Dan deBartolomeo,
the CEO of Northfield, has said ‘There is a disconnect in the
industry between portfolio construction and trading and many
portfolio managers leave the issue of transaction costs to the
trading team.’§ Portfolio managers who do ignore transaction
costs may create ‘crowding’ due to transaction costs that will
only be realized ex-post when it is too late.

The main focus of this paper was to study whether crowding
could result when equity portfolio managers use the same
transaction cost models to construct their portfolios. Whether

†A portfolio manager might split up the order over several days, but
market impact is still present to a degree, since this is just a scaling
of the magnitude of the impact. Even if a portfolio manager builds
their positions over several days, they are essentially crowding the
investment space regardless and may be in jeopardy when a shock
arises that requires them to sell quickly.
‡Of course, there is a complicated relationship between the
optimization parameters, the alpha signals, and the constraints of the
optimization problem.
§This was said in a conversation with me.

or not this crowding will result in a distorted risk and return
space will depend on other factors not covered in this research.
In particular, if the group of portfolio managers that are man-
aging assets are small relative to the universe of securities,
then the crowding of this space by these portfolio managers
may not be a concern, since they can trade in and out of their
positions with ease. On the other hand, if these portfolio man-
agers in the crowded space are large relative to the universe,
than their crowding may distort the risk and return space and
cause instability. The question of what is small and what is
large is not easy to measure either. Small does not necessarily
mean the percentage of assets owned in the space. It may be
more relevant to measure the size of the managers’assets under
management in relation to the daily liquidity or traded volume
of the space. The quant crisis of August 2007 showed that even
in a market where the quant players were small relative to total
ownership, simultaneous trading in similar securities can cause
instability. The determination of when crowding is dangerous
or not is a very important one and is for further research to
answer.

6. Conclusion

The links between market participants’ interconnectedness and
financial stability are gaining increasing attention in the finan-
cial community. The behaviour of market participants can lead
to changed equilibrium prices that depart from pricing funda-
mentals and leave a trading space vulnerable to collapse. One
way a trading space can become crowded is through portfolio
managers copying each other’s trade ideas or implementing
similar trade ideas that lead to similar positions. The crowding
of the investment space may in turn lead to mismeasurements
of risk.

Another way a trading space can become crowded and make
it difficult for portfolio managers whose positions have become
concentrated to trade those positions might come from the use
of similar transaction cost models. Transaction costs influence
the net alpha of a stock and hence can potentially influence
the type of portfolio an investor chooses. Transaction costs are
mainly driven by market impact costs which, in turn, depend
on the size of the portfolio.¶ As an example, suppose that two
portfolio managers wish to trade two stocks; portfolio manager
1 likes stock A and portfolio manager 2 likes stock B. Ignoring
diversification issues, portfolio manager 1 would like to buy
70% of A and 30% of B, whilst portfolio manager 2 would
like to buy 30% of A and 70% of B. However, if stock B has a
large transaction cost relative to A, then both managers might
tilt more heavily towards A. In fact, the result might be that
portfolio manager 1 buys 75% of A and portfolio manager 2
buys 70% of A, which causes crowding and ironically may
lead to ex-post trading costs that are even larger than ex-ante
trading costs.

Using simulated portfolios, we find that consideration of
transaction costs in portfolio construction actually leads to
less crowding or at most an insignificant amount of additional
crowding for individual portfolio sizes of $500 million to $5

¶These costs also depend on the size of other portfolios that are selling
or buying securities at the same time.
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billion. For long-only portfolio managers with randomly gen-
erated alpha models, we find that the average crowding from
portfolios with no transaction costs is about 23% greater than
crowding from portfolios with an average size of $20 billion
that consider transaction costs. For market neutral portfolios,
we find no statistical difference in the average crowding that
occurs with portfolios up to $20 billion in size. Thus, for port-
folio sizes up to $20 billion, the negative impact of transaction
costs is not great enough to cause a particular concentration of
stock holdings.

However, crowding starts to increase as portfolio sizes grow
larger than $20 billion in a US stock universe of 2000 com-
panies over the period from 2006 to 2013. As portfolios grow
above this size, the non-linear nature of market impact makes
it extremely costly to hold smaller companies, and thus the
holdings of the portfolios concentrate and result in increased
crowding. Ultimately, the conditions that will cause crowding
from transaction costs depend on the ratio of the portfolio size
to the average volume of individual securities that are traded.
Thus, although portfolio managers during the quant crisis of
2007 mentioned transaction costs as a potential cause of the
crowding that occurred during the crisis (Chincarini 2012), the
simulated evidence in this paper indicates that the crisis may
have had less to do with transaction costs and more to do with
other factors such as copycat alpha models. In summary, even
though transaction costs and crowding are ultimately important
for understanding liquidity and systemic risk, we do not find
that they lead to fragile investment conditions for reasonably
sized equity portfolios.

Our paper contributes to a better understanding of systemic
risk by demonstrating how the interactions of portfolio man-
agers when preparing portfolios may lead to inadvertent crowd-
ing. With its particular focus on transaction cost models, the pa-
per shows how crowding and transaction costs are related and
also introduces a simple and very useful method to incorporate
transaction costs into a portfolio optimization framework.

There are many directions for further research in the area
of crowding. A more detailed investigation of the trade-off be-
tween trading liquidity and portfolio size would be interesting,
including an examination of whether there are obvious limits
to a portfolio’s size given a trading strategy.An investigation of
how different parameters of the portfolio construction process
influence the relationship between crowding and transaction
costs would also be interesting. Growth in the size of a portfolio
may also provide a linkage between what constitutes a short-
term investor and a longer-term investor, since transaction cost
constraints will force an honest and knowledgeable manager
to be a longer-term investor.

Several studies have related crowding and past performance
of stock returns (momentum). It might be illuminating to study
the links between momentum and transaction costs. That is, as
certain stocks perform relatively better, they naturally become
a larger proportion of one’s portfolio. The future sale of these
particular stocks might thus have a larger impact on prices, and
hence transaction costs, than originally anticipated. A related
area is the question of how a portfolio manager’s effective
universe of securities decreases as the portfolio size grows and
how crowding depends on the size of the investment universe
and the number of managers in that universe.
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Appendix 1. Applied optimization details

Our optimizations involve three portfolio management techniques.
This appendix describes the optimization problem set-up. All of our
optimizations were performed in MATLAB using MATLAB’s opti-
mization routines, in addition to user-adjusted optimization routines,
and the CPLEX optimization tools from IBM.†

A.1. The long portfolio

Our approach is to maximize the expected return after transaction
costs (or net alpha signal) of the portfolio subject to a variety of
constraints, including that the portfolio volatility be equal to the
60-month historical volatility of the S&P 500‡, the weights of the

†Some of the optimizations were not solvable in feasible time with
versions of MATLAB older than 2014a.
‡In cases where it is not feasible to achieve the S&P 500 historical
volatility, the closest feasible volatility is used in the optimization.

portfolio sum to 1, the weights of any individual stock are between 0
and 10%, and that the portfolio has the same exposure to each sector
as the benchmark universe of 2000 stocks.

max
w

w′μ − t̃c (A1)

s.t. (A2)

w′�w = σS&P500 (A3)

w′ι = 1 (A4)

0 ≤ w ≤ 0.10 (A5)

Sw = wB M
s (A6)

where w are the weights of the stocks in the portfolio, μ is a vector
of alpha signals for each stock, t̃c is the net transaction costs, � is the
variance–covariance matrix of stock returns, ι is a vector of ones, S
is an M-by-N matrix of zeros and ones representing the M sectors of
the economy with a 1 if the security is in that sector and a 0 if not,
and wB M

s is an M-by-1 vector of sector weights for the benchmark
universe.

We also consider the reverse optimization problem whereby the
portfolio is constructed by minimizing the variance of the portfolio
subject to achieving a target after-transaction cost alpha equal to
historical annualized volatility of the S&P 500 divided by

√
12.

A.2. The market neutral portfolio

Since many quantitative portfolio managers construct market neu-
tral portfolios, we also investigate crowding with the market neutral
construction. The approach is to maximize the expected return after
transaction costs or net alpha of the portfolio, whilst constraining the
portfolio to have a target volatility equal to 5% over the risk-free rate,
have a leverage of 2 and be dollar-neutral (that is, sum of long weights
sum to 1 and sum of short weights sum to 1), the long portfolio is
sector neutral to the short portfolio, the weights of an individual stock
cannot be less than −10% or greater than 10%§, and beta neutral (that
is, the weighted average beta of the long portfolio equals the weighted
average beta of the short portfolio).

max
w

w′μ − t̃c (A7)

s.t. (A8)

w′�w = 0.05 (A9)

w′
L ι = 1 ∀wi ≥ 0 (A10)

w′
Sι = −1 ∀wi < 0 (A11)

−0.10 ≤ w ≤ 0.10 (A12)

w′β|wi ≥0 = −w′β|wi<0 (A13)

SwL = −SwS (A14)

where w are the weights of the stocks in the portfolio, μ is a vector
of alpha signals for each stock, � is the variance–covariance matrix
of stock returns, ι is a vector of ones, β is a vector of the CAPM beta
for each stock estimated on five-year historical return data, S is an
M-by-N matrix of zeros and ones representing the M sectors of the
economy with a 1 if the security is in that sector and a 0 if not, wL and
wL represents the weights of the long and short portfolio respectively.

We also consider the reverse optimization problem whereby the
portfolio is constructed by minimizing the variance of the portfolio
subject to achieving a target after-transaction cost alpha equal to
historical annualized volatility of the S&P 500 divided by

√
12.

A.3. The market neutral portfolio with liquidity constraints

We constructed market neutral portfolios that incorporated reasonable
self-imposed liquidity constraints. The optimization approach was
exactly the same as for the market neutral portfolio, however, we
added a liquidity purchase constraint that is a fraction of the average
daily trading volume.

§We initially started with smaller weight restrictions of 0.03 and
−0.03, but many of the optimizations could not be solved, thus we
expanded the weight constraint.

https://doi.org/10.2139/ssrn.1015987
http://ssrn.com/abstract=1015987
http://www.northinfo.com/documents/354.pdf
http://ssrn.com/abstract=2404272
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Liquidity constraints are relatively straightforward to add to the
optimization problem. The constraint takes the form of a portfolio
manager not wishing to trade more than some percentage of the
average daily trading volume of the stock. That is, the constraint
is Vtwi t ≤ cADT Vit or wi ≤ c

Vt
ADT Vit , where c represents a

constant indicating the threshold percentage that the portfolio man-
ager wishes to trade in any given stock, Vt is the dollar value of the
portfolio, and ADT Vit is the average daily trading volume of stock
i at time t in dollars. A typical value for this in the quantitative world
is 15%.¶

Since the liquidity constraint is essentially an upper bound weight
constraint, the upper bound and lower bound weight constraint for
every stock was adjusted using the following algorithm. If the liquidity
constraint was higher than the existing stock constraint (i.e. 10%), then
we didn’t alter the stock’s weight constraint. If smaller, we changed
the upper and lower bound constraint to be equal to the liquidity
constraint value for each stock. We did this for both the long and
short side of the portfolio.

Unfortunately, when we added these constraints and increased the
size of the portfolios, oftentimes there was no feasible solution. Also,
since our main goal was to investigate transaction costs and their
impact on portfolio construction, we removed the liquidity constraints
and did not report them in this paper.

A.4. Market neutral construction

One of the challenges of the market neutral optimization was to set-
up the problem so that leverage could be limited. The method we
employed for every one of the N stocks in our stock universe was to
create an additional set of weights called buy weights and an additional
set of sell weights. Thus, for N stocks, we created weights, w1...wN ,
wb

1 ...w
b
N , and ws

1...w
s
N . We then constructed our entire optimization

with these 3N weights. In preparing our inputs for the optimization,
we formulated the following:

μ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1
...
αN
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A15)

where there are 2N zero values in the column.The variance–covariance
matrix was also modified as follows:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V (r1) C(r1, r2) · · · C(r1, rN ) 0 · · · 0
C(r2, r1) V (r2) · · · C(r2, rN ) 0 · · · 0

... 0 · · · 0
C(rN , r1) C(rN , r2) · · · V (rN ) 0 · · · 0

0 · · · 0
... · · · · · · · · · · · · · · · 0
0 · · · · · · · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A16)
Most importantly, we altered the constraints in such a way as to

keep the main constraints on the final weights (i.e. w1...wN ), whilst
achieving our market neutral leverage and dollar-neutral constraints.
Thus,

A =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0 −1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 −1 · · · 0 0 1 · · · 0
...
...

...
...

...
...

...
...
...

...
...

...
0 0 · · · 0 1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 1 1 · · · 1

⎤
⎥⎥⎥⎥⎦

b =
⎡
⎣ 0

1
1

⎤
⎦ (A17)

¶The quantatitive manager might also have a total limit on the ultimate
size of any position, for example, three times the ADTV. We did not
consider this additional consideration for this study.

These constraints created an optimization whereby wi = wb
i − ws

i ,∑nb
i wb

i = 1, and
∑ns

i ws
i = 1. We also added constraints that

wB ≥ 0 and wS ≥ 0, where these are the vector of buy weights
and sell weights respectively. This ensured that our market neutral
portfolio was dollar neutral and had leverage limited to 2. One could
modify this for other forms of leverage very easily. The weights we
ultimately are interested in are the w. Any additional constraints on
these weights, such as upper and lower bounds or sector constraints
were added to the constraint matrix, A, simply by adding rows and
placing zeros wherever the wB and wS occurred.

Although this solution enabled leverage and dollar-neutral con-
straints on our market neutral portfolio, it did not guarantee that we
didn’t have wasteful solutions such as purchasing and selling pieces
of the same stock. In order to reduce this possibility, we introduced a
penalty function into our objective function of the form,

−�(ι′wB + ι′wS).

Appendix 2. Transaction costs construction

Due to the recursive nature of transaction costs, that is, the optimal
weight of a stock depends on the transaction costs of that stock, but the
transaction costs, due to market impact, depends on the optimal weight
of the stock, we use the technique outlined in the paper to approximate
transaction costs by a quadratic function. In this appendix, we show
how to use the results of that approximation to optimize the portfolio.

B.1. Long-only portfolio

In order to incorporate our approximate transaction costs into the
portfolio optimization problem, we must modify the quadratic op-
timization program slightly.† First, we must use a quadratic opti-
mization routine that can accept quadratic constraints, in addition to
linear constraints.‡ Second, we must modify the traditional portfolio
optimization setup to work with transaction costs.

The mathematical expression of the quadratic optimization with
quadratic constraints is given as,

min
x

1

2
x′Qx + x′c s.t. A′x ≤ b (B1)

l′x + x′Q∗x ≤ r (B2)

lb ≤ x ≤ ub (B3)

where x is the vector of unknowns in the problem, Q is a sym-
metric positive semi-definite matrix supplying the coefficients on
the quadratic terms of the optimization problem, c is a vector of
coefficients related to the linear objective function, A is a matrix of
coefficients for the equality and inequality constraints, b is a vector
of constraint values, l is a vector, Q∗ is a matrix, lb is a lower bound
vector, and ub is an upper bound vector.

In the traditional mean-variance optimization problem, we substi-
tute the following variables; x = w, the stock weights, Q = �, the
variance–covariance matix of stock returns, c = 0, l = 0, Q∗ = 0,
A is chosen typically to have a row of ones and a row of expected
returns, and the lower and upper bounds are set as desired.

In order to create an optimal portfolio which minimizes the risk of
the portfolio and achieves a desired after-transaction cost alpha, the

†Some books discuss using binary constraints as a way of including
transaction costs. Usually, this is because those writers have not
considered the empirical implications. It is extremely difficult for
the optimizer to solve such problems. In fact, even impossible.
‡For example, CPLEX’s cplexqcp.
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parameters chosen were as follows:

A =
[

1 1 · · · 1
[ ]

]
(B4)

b =
[

1
[ ]

]
(B5)

Q = 2� (B6)

Q∗ =

⎡
⎢⎢⎢⎣
β̂1 0 . . . 0
0 β̂2 . . . 0
...

...
...

...

0 0 0 β̂N

⎤
⎥⎥⎥⎦ (B7)

and l = −μ̃, μ̃ = μ − α̂, c = 0, and r = −μT , where μ̃ is a vector
of the expected returns of each stock minus the constant estimate in
the transaction cost regression, μ is the expected return of each stock,
μT is the desired target of after transaction costs expected return for
the portfolio to match, and β̂i is the coefficient estimate from the
transaction cost regression for stock i .

For the dual problem of maximizing the after transaction cost
return, whilst achieving a target variance, the parameters chosen are
as follows:

A =
[

1 1 · · · 1
[ ]

]
(B8)

b =
[

1
[ ]

]
(B9)

Q =

⎡
⎢⎢⎢⎣
β̂1 0 . . . 0
0 β̂2 . . . 0
...

...
...

...

0 0 0 β̂N

⎤
⎥⎥⎥⎦ (B10)

Q∗ = � (B11)

and l = 0, c = −μ̃, μ̃ = μ − α̂, and r = σ T , where μ̃ is a vector
of the expected returns of each stock minus the constant estimate in
the transaction cost regression, μ is the expected return of each stock,
σ T is the target volatility for the portfolio to match, and β̂i is the
coefficient estimate from the transaction cost regression for stock i .

B.2. Market neutral

The market neutral problem is slightly more complicated. As ex-
plained previously, we create phantom weights for the securities in the
long and the short portfolios. In order to create an optimal portfolio
which minimizes the risk of the portfolio and achieves a desired after-
transaction cost alpha, the parameters chosen were as follows:

A = [ [ ] ]
(B12)

b = [ [ ] ]
(B13)

Q = 2� (B14)

where � is as in equation (A16).

Q∗ =
⎡
⎣ 0 0 0

0 �2 0
0 0 �2

⎤
⎦ (B15)

where

�2 =

⎡
⎢⎢⎢⎣
β̂1 0 . . . 0
0 β̂2 . . . 0
...

...
...

...

0 0 0 β̂N

⎤
⎥⎥⎥⎦ (B16)

and l = −μ̃, μ̃ = [μ,−α̂,−α̂]′, c = 0, and r = −μT , where μ̃ is a
3 × N matrix of the expected returns of each stock and the constant
estimates in the transaction cost regression, μ is the expected return of
each stock,μT is the desired target of after transaction costs expected
return for the portfolio to match, and β̂i is the coefficient estimate
from the transaction cost regression for stock i .

For the dual problem of maximizing the after transaction cost
return, whilst achieving a target variance, the parameters chosen are
as follows:

A = [ [] ]
(B17)

b = [ [] ]
(B18)

Q =
⎡
⎣ 0 0 0

0 �2 0
0 0 �2

⎤
⎦ (B19)

where

�2 =

⎡
⎢⎢⎢⎣
β̂1 0 . . . 0
0 β̂2 . . . 0
...

...
...

...

0 0 0 β̂N

⎤
⎥⎥⎥⎦ (B20)

Q∗ = 2� (B21)

where � is as in equation (A16) and l = 0, c = −μ̃, μ̃ = [μ,−α̂,−
α̂]′, and r = −σ T , where μ̃ is a 3 × N matrix of the expected
returns of each stock and the constant estimates in the transaction
cost regression, μ is the expected return of each stock, σ T is the
after transaction costs risk for the portfolio to match, and β̂i is the
coefficient estimate from the transaction cost regression for stock i .
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