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Abstract Chincarini and Kim (2006) argued that the information ratio can be interpreted as the

square root of R2. In this paper, we further develop this argument by, first, making a distinction

between the conditional and the unconditional information ratio and, then by clarifying the

relationship between R2 and two versions of the information ratio. This paper also discusses the

implications of our approach for interpreting the Fundamental Law of Active Management.
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Introduction
The information ratio is a popular measure

of risk-adjusted return performance for

active portfolio managers. The numerator of

this ratio is the active return or ‘alpha’, (a)

that is, the constant term in the regression of

the portfolio return on the benchmark

return. The denominator is the active risk or

‘omega’ (o), that is, the standard deviation of

the error in the same regression. Through

the fundamental law of active management,

Grinold (1989) and Grinold and Kahn

(1999) showed that the information ratio is

approximately related to the breadth (the

number of distinct signals by which portfolio

managers forecast asset returns) and the

information coefficient (the average quality

of those signals).1 They also noted that the

information ratio is equivalent to the

maximum Sharpe ratio under certain

conditions.2

Owing to the popularity of the

information ratio and the fundamental law

among practitioners, a number of papers

have been written recently on this topic.

Relatively more attention has focused on the

right-hand side of the fundamental law, that

is the breadth and the information

coefficient. For example, Clarke et al. (2002)

extended the fundamental law to the case

where additional constraints are added to the

portfolio optimisation. Buckle (2004)

extended the model of Grinold and Kahn so

that the breadth can be measured without the
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knowledge of the number of signals.3

Goodwin (1998), on the other hand, focused

on the information ratio itself. He made an

excellent exposition of various interpretations

of the information ratio, and he especially

clarifies the relationship between the

information ratio and the Sharpe ratio,

and between the information ratio and

the t-statistic. Chincarini and Kim (2006)

looked at the information ratio from an

econometric perspective. They argued that

the information ratio can be interpreted

as the square root of R2, the standard measure

of goodness of fit in regression analysis.

In this paper, we take another look at the

information ratio, and further develop the

argument of Chincarini and Kim (2006).4

We will make a distinction between the

conditional information ratio and the

unconditional information ratio. The

conditional information ratio is a useful

theoretical concept; but it is not something

that can be estimated from real data and used

to construct portfolios. The unconditional

information ratio is what is important for

portfolio construction, since it can be

estimated from actual data. We will show that

the squared unconditional information ratio

equals the ratio of the regression sum of

squares (RSS) to the error sum of squares

(ESS). The ratio of RSS to ESS, in turn, can

be approximated by the ratio of RSS to the

total sum of squares (TSS).5 This resulting

ratio can be interpreted as a generalised R2,

a measure of the goodness of fit in a

multivariate regression analysis.

Our interpretation of the information ratio

has a number of practical advantages. First of

all, our interpretation is fairly simple and

intuitive to those familar with basic

econometrics. It is consistent with the intuition

that the portfolio manager’s value added is

directly related to the power of his or her

forecasting ability, that is, the power of the

underlying regression. The simplest measure of

the power of a regression is the goodness of fit.

Second, and perhaps a more important

advantage of our interpretation, is that it

provides an alternative perspective on the

fundamental law. The fundamental law breaks

down the portfolio manager’s value added

into his or her breadth and skills. Our view of

the fundamental law is that the portfolio

manager’s value added comes from the power

of the regression analysis, and the power of the

regression analysis can be broken down into

the breadth of the regression and the quality

of the forecasting variables.

This perspective leads us to formulate the

breadth and the information coefficient in a

new way. Once the nature of the information

ratio is recognised, it is easy to see that the

breadth and the information coefficient can be

defined in a simple, measurable way. We argue

that the way to measure breadth is to count

the number of linearly independent

forecasting variables. We justify our proposal

by showing that the ‘true’ number of distinct

signals cannot be determined ex post, and that

signals affect the power of forecasting only

through forecasting variables. We believe this

perspective may be beneficial to

understanding active management, since

currently breadth, the number of distinct

signals, is not measurable in practice.6

The remainder of the paper consists of

four sections. The next section explains

the conditional and the unconditional

information ratio, and shows that the

unconditional information ratio is

approximately equal to the square root of the

generalised R2. The subsequent section

illustrates the concepts with a simple

example. The penultimate section discusses

the implications of this for the fundamental

law. The last section concludes.

The conditional IR, the
unconditional IR, and the
generalised R2

Grinold and Kahn’s framework can be best

understood as a linear regression model. We

first explain Grinold and Kahn’s framework as

a linear regression model, and spell out the

assumptions that they made implicitly as well as
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explicitly. After that, we define the conditional

information ratio and the unconditional

information ratio and examine the relationship

between the information ratio and R2.

The linear regression model

Grinold and Kahn made three sets of

assumptions to derive what is known as the

fundamental law. First, Grinold and Kahn

assumed that the return generating process is

a linear function of certain exogenous

variables. Secondly, they assumed that the

capital asset pricing model is correct for the

given benchmark. That is, the expected

return of individual stocks is determined as

the product of the beta and the benchmark

return. Thirdly, Grinold and Kahn assumed

that the linear regression model does not

have any predictive power for the benchmark

return. That is, the exogenous variables can

help to predict individual stock returns, but

not the benchmark return. We discuss each

of these assumptions in turn.

Suppose that the investment universe is

comprised of N stocks whose return is

denoted by vector r. We assume that the

return generating process for r is a linear

function of exogenous variables x. Formally,

we assume the following linear regression

model for individual stock returns.

Assumption 1 (Return Generating

Process). Stock return vector r is

generated from the following linear

regression model:

r ¼ a þ Bx þ m (1Þ
where

EðmjxÞ ¼ 0

V ðmjxÞ ¼ S
(2Þ

and

EðxÞ ¼ 0 (3Þ
where S is a symmetric positive definite

matrix.

In Equation (1), x represents the ‘surprise’

or the ‘shock’; n is ‘noise’ that influences the

stock returns randomly. Equation (2) implies

that the mean of stock returns conditional on

the value of x is aþBx. It also implies that

the variance of stock returns conditional on

the value of x is S. Given that x represents

‘surprise’, it is natural to assume that its

expected value is zero, as indicated in

Equation (3). Thus, a is the unconditional

mean of stock returns.

The next assumption used by Grinold and

Kahn has to do with the capital asset pricing

model. The capital asset pricing model

implies that, given the benchmark return rB
(which we assume to be the market portfolio

with all the ideal properties), the returns of

individual stocks can be written in the

following way:

r ¼ brB þ e (4Þ
where brB is the part of r correlated with the

benchmark, and e is the uncorrelated part. e
is often called the active return, as it is the

component of return, not coming from the

simple correlation with the benchmark, but

possibly resulting from active management.

Denoting the benchmark weights as wB so

that rB¼wB
0 r,

b ¼ V ðrÞwB

w0
BV ðrÞwB

e ¼½I 	 bw0
B
r

(5Þ

The capital asset pricing model requires that

the expected value of the active return is zero,

that is E(e)¼ 0. Given that the unconditional

mean of stock returns is a, we can write their

second assumption more succinctly as

Assumption 2 (Capital Asset Pricing

Model). The capital asset pricing model is

assumed to be correct in the sense that

E(r)¼ bE(rB).

This implies that the constant term in the

return generating process, that is a in

Equation (1), must satisfy the following

constraint:

½I 	 bw0
B
a ¼ 0 (6Þ
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That is, the capital asset pricing model

imposes a restriction that the unconditional

mean of stock returns (a) is orthogonal to a

function of b and wB. Given this restriction,

we can express the active return e as

following:

e ¼ ½I 	 bw0
B
ðBx þ mÞ (7Þ

The third assumption made by Grinold and

Kahn was that the linear regression model

does not have any predictive power for the

benchmark return. Unlike the first two

assumptions, this assumption is not of

substantial value. That is, we could derive

our main result without making this

assumption. With this assumption, however,

we can focus solely on active returns rather

than total returns. This third assumption is

summarised in the following statement.

Assumption 3 (No Prediction of

Benchmark Return). The linear

regression model does not have any

predictive power for the benchmark return.

This implies that the ‘slope’ term in the

return generating process, that is, B in

Equation (1), must satisfy the following

constraint:

w0
BB ¼ 0 (8Þ

This assumption simplifies the active

return further. Now, we can express the

active return e as:

e ¼ Bx þ m� (9Þ
where

Eðm�jxÞ ¼ 0

V ðm�jxÞ ¼ S� (10Þ

and n� is (I	bwB
0 )n, while S� is

(I	bwB
0 )S(I	wB b0). The reader should

notice a similarity between Equation (1) and

Equation (9). Basically, assumptions 2 and 3

transformed the total return generating

process into an active return generating

process, while maintaining the basic structure

of the linear regression model intact. The

active returns are again a linear function of x,

and the new error term n� is orthogonal to x.

The intuition is simple. Since the linear

regression model for total returns does not

say anything about the benchmark return, we

can use the same linear regression model for

the active return part only.

There is a peculiarity in the linear

regression model for active returns. From

Assumption 3 and the definition of S�, e is

orthogonal to wB. That is, elements of e are

not linearly dependent, and only N	1

elements of e are linearly dependent. In

practical terms, we cannot estimate Equation

(9) as it is. We can only estimate N	1

elements of e by a linear regression. Thus, we

partition Equation (9) into two parts: the

equation for the first element of e (denoted

by e1) and the equation for the remainder of

e (denoted by e2). We can apply the linear

regression model for e2, and e1 will be

determined automatically from e2. For future

reference, the linear regression model for e2 is

e2 ¼ B2x þ m�2 (11Þ

where

Eðm�2jxÞ ¼ 0

V ðm�2jxÞ ¼ S�
22

(12Þ

and B2 is created by eliminating the first row

from B. S22
n is created by eliminating the first

row and the first column from S�.

The conditional IR and the

unconditional IR

A given portfolio return rP, can be

decomposed into two parts.7 That is,

rP ¼ bPrB þ eP (13Þ

where bPrB is the part of the portfolio return

correlated with the benchmark and eP is the

active return of the portfolio. Let us denote

the vector of portfolio weights as wP, such

that rP¼wP
0 r. Then bP¼wP

0b and

eP¼wP
0 e.Thegoaloftheactivemanageris

to find the maximum information ratio,

which is obtained by finding the maximum
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ratio of the expected value of active return to

the risk of the active return.

Before moving on, let us examine some

characteristics of Equation (9). The

randomness of eP arises from the exogenous

variables x and the random error n�. While

n� is never observed, x can be observed. This

means that we have two ways to calculate

the expected value of eP. We could calculate

the unconditional expected value of eP. Or

we could calculate the expectation of eP
conditional on the value of x. However, the

unconditional expectation of eP is not

interesting to us as we know that it is always

zero. Thus, it makes sense to calculate the

conditional expectation of eP rather than the

unconditional expectation of eP.

Let us denote the expected value and the

risk of the active return conditional on the

value of x as aP and oP, respectively. Then

aP ¼EðeP jxÞ ¼ w0
PBx

o2
P ¼V ðeP jxÞ ¼ w0

PS�wP

(14Þ

We call the maximum ratio of aP to oP the

conditional information ratio8

IRc � max
aP

oP

(15Þ

It is the conditional information ratio as its

value is conditional on some value of x. When

the value of x is not known, we cannot

determine the conditional information ratio. In

such a case, we can take the expectation of the

conditional information ratio with respect to

x.9 We call the expectation of the conditional

information ratio the unconditional information

ratio. Formally,

IR2
u � ExðIR2

c Þ (16Þ

where the subscript to the function E indicates

that the expectation is taken with respect to x.

Equation (16) is really an equation for the

squared unconditional information ratio.10 The

unconditional information ratio is the central

tendency of the conditional information ratio

as the exogenous variables x take different

values. There are some important distinctions

between the conditional information ratio and

the unconditional information ratio.

First, while the (unconditional) expected

value of eP and aP is zero, the expected value

of the unconditional information ratio is not

zero.11

Secondly, what appears on the left-hand

side of the fundamental law is the

unconditional information ratio. For this

reason, the information ratio mentioned in

the literature is mostly referring to the

unconditional information ratio. However,

when people discuss the ‘ex post’ information

ratio, sometimes they are in fact referring to

an estimate of the conditional information

ratio.

Thirdly, both the conditional information

ratio and the unconditional information ratio

are functions of unknown parameters. Thus,

they may be estimated from the data, but

their true value cannot be known. Any

information ratio one might calculate from

the data is in fact an estimate.

Fourthly, we do not want to equate the

conditional/unconditional distinction with the

ex ante/ex post distinction. The exact meaning

of ex ante and ex post is rather unclear, and

people use these terms rather vaguely. Some

people use the ex ante/ex post distinction to

refer to the conditional/unconditional

distinction, while others use them to refer to

the estimator/estimate distinction.12

For future reference, we present an

expression for the conditional information

ratio based on the ‘partitioned’ linear

regression model of the active returns, that is,

Equation (11). Let us denote the first

element of the benchmark weight vector and

the portfolio weight vector as wB1 and wP1

and the remainder of the benchmark weight

vector and the portfolio weight vector as wB2

and wP2. Similarly, let us denote the first row

of matrix B as B1 and the remainder as B2.

For S�, we will partition the matrix into four

parts, the upper-left element S11
� , the upper-

right part S21
� 0, the lower-left part S21

� , and

the lower-right part S22
� (In this particular

case, S11
� is a scalar). From the orthogonality

Chincarini and Kim
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between the benchmark weights and B, we

can express B1x as k0B2 where k¼	wB2/

wB1. From the orthogonality between the

benchmark weights and S�, we can write S11
�

as k0S22
� k and S21

� as S22
� k. Then

aP ¼~w0
P2B2x

o2
P ¼~w0

P2S
�
22 ~wP2

(17Þ

where ~wP2¼wP1k
0 þwP2 Then the

conditional information ratio is

IRc ¼ max
~wP2

~w0
P2B2x

~w0
P2S

�
22 ~wP2

(18Þ

In Equation (18) the control variable of the

maximisation problem changed from wP to

~wP2. The dimension of ~wP2 is smaller than wP.

This is due to the fact that the active returns are

orthogonal to the benchmark returns. We also

do not impose the restriction that the sum of

the portfolio weights should be one in the

maximisation. If the sum of the weights is not

one, we can simply rescale the weights, and this

rescaling does not influence the ratio of aP to

oP . Thus, we will ignore this constraint in our

analysis.13

The unconditional IR and the

generalised R2

We reformulate the maximisation problem of

Equation (18) into a more familar-looking

variance minimisation problem. We can

minimise oP for some value of aP. The

solution to this problem will depend on the

value of aP . By varying the value of aP, we

obtain a set of ~wP2 that minimises the residual

variance. From this set, we can find the

maximum value of aP/oP . The variance

minimisation problem can be written as

follows:

min
~wP2

~w0
P2S

�
22 ~wP2

s:t: ~w0
P2B2x ¼ m

(19Þ

where m is a scalar, whose value we want to

vary to generate the set of optimal weight

vectors.

The solution ~wP2
� and the corresponding

aP/oP are

~w�
P2 ¼

mS22
�	1B2x

x0B0
2S

�	1
22 B2x

aP

oP

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0B0

2S
�	1
22 B2x

q (20Þ

The equation for the value aP/oP does not

depend on m. That is, the ratio of aP to oP is

constant regardless of the target mean m, as

long as the minimum variance is reached.

Thus we can find the conditional

information ratio without further

calculation:

IRc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0B0

2S
�	1
22 B2x

q
(21Þ

The squared unconditional information ratio

is obtained by integrating out x:

IR2
u ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0B0

2S
�	1
22 B2x

q
(22Þ

The squared unconditional information ratio

obtained above can be interpreted as the

generalised R2 of the linear regression model

for the active returns e2. In a regression with

one dependent variable, R2 is defined as the

ratio of the RSS to the TSS, where RSS is

the variation in the explanatory variables and

their coefficients and TSS is the variation in

the dependent variable. That is, given the

regression model

y ¼ bz þ Z (23Þ
R2 is defined as

R2 ¼ V ðbzÞ
V ðyÞ (24Þ

We can generalise R2 for the regression

with many dependent variables in a

straightforward way. We define TSS as the

variance–covariance matrix of the dependent

variables, and RSS as the variance–

covariance matrix of the explanatory

variables and their coefficients.

Mathematically, we just replace scalars in

Equations (23) and (24) with vectors

and matrices. That is, given the

Another look at the information ratio
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regression model

y ¼ bz þ g (25Þ
the generalised R2 is defined as14

R2 ¼ tr V ðbzÞ
1
2V ðyÞ	1

V ðbzÞ
1 0

2

� �
(26Þ

Equations (22) and (26) are very similar in

structure. The similarity is not an accident.

We can approximate the squared

unconditional information ratio IRu
2 as the

generalised R2 of the regression of the model

in Equation (11). Starting from the

generalised R2 of Equation (11), we have

R2 ¼tr½V ðB2xÞ
1
2V ðe2Þ	1

V ðB2xÞ
1
2 0


¼tr½V ðe2Þ	1
V ðB2xÞ


�tr½V ðe2jxÞ	1
V ðB2xÞ


¼tr½S�	1
22 B2Eðxx0ÞB0

2

¼Eðx0

2S
�	1
22 B2xÞ ¼ IR2

u ð27Þ

Only one approximation was made in the

above derivation. The approximation was to

replace V(e2) with V(e2|x). In the regression

framework, we are assuming that RSS is

small relative to TSS. That is, we are

assuming that the R2 is not too large.15

If this is true, then replacing TSS in the

denominator with the ESS will be

approximately correct. This approximation is

not of our own invention. It is the same

approximation used by Grinold and Kahn to

derive the fundamental law.

One might not understand how the

generalised R2 and the information ratio can

be related since the former is bounded by 0

and 1, while the information ratio can take

on an unlimited possible values. This can be

explained by the fact that the two are only

approximately related. In particular, when

the ratio of RSS to TSS is significantly

different from 0, then this relationship no

longer holds. However, when the

assumption that RSS is small relative to TSS

is not true, neither is the fundamental law.

That is, our approximation error is of the

same size as that of the fundamental law.

Thus, if you are assuming that the

fundamental law is valid and using it, you can

also use our formulation that the generalised

R2 is equal to the squared information ratio.

An example
To illustrate these concepts in a more

practical form, we will go through a realistic

example consisting of a small portfolio and

show how the generalised R2 of the regression

of stock returns is very close to the

unconditional information ratio squared.

Suppose that we are creating an equity

portfolio consisting of five large companies —

General Electrics (GE), Microsoft (MSFT),

Pfizer (PFE), Wall-Mart (WMT), and Exxon

Mobil (XOM). The benchmark is the value-

weighted index of these five stocks. We want

to use the following three variables — the

change in consumer sentiment index, the

size premium, and the value premium — for

forecasting stock returns. Let us say that we

are forming a portfolio at the end of

December 1999, and that we would like to

use five years of data to estimate our

model.16

In this situation, it is natural to estimate

the equation relating the return of each of

the five stocks to three forecasting variables.

However, if one believes that the benchmark

cannot be predicted (as stipulated in

Assumption 3), then one would estimate an

equation for the residual (ie active return)

rather than for the return. To obtain the

active return, we estimate the following

equations:

rGE;t ¼aGE þ bGErB;t þ e�GE;t

rMSFT;t ¼aMSFT þ bMSFTrB;t þ e�MSFT;t

rPFE;t ¼aPFE þ bPFErB;t þ e�
PFE;t

rWMT;t ¼aWMT þ bWMTrB;t þ e�
WMT;t

rXOM;t ¼aXOM þ bXOMrB;t þ e�XOM;t

t ¼Jan 1995; . . . ;Dec 1999 ð28Þ

where rB,t is the benchmark return. For each

stock, we define the active return ê as the

sum of the estimated a and the estimated e�.

Chincarini and Kim
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That is,

êGE;t ¼âGE þ ê�GE;t

êMSFT;t ¼âMSFT þ ê�MSFT;t

êPFE;t ¼âPFE þ ê�PFE;t

êWMT;t ¼âWMT þ ê�WMT;t

êXOM;t ¼âXOM þ ê�XOM;t

t ¼Jan 1995; . . . ;Dec 1999 ð29Þ

Once the active returns are obtained, we can

estimate the equation relating the active

returns to the three forecasting variables.

Recall, however, from the previous section

that it is not necessary to estimate the

equation for every stock. One equation is

redundant as active returns are not linearly

independent. Thus, we drop the equation for

GE, and estimate for the remaining four

stocks only. That is,

MSFT;t ¼bMSFT;0 þ bMSFT;1x1;t

þ bMSFT;2x2;t þ bMSFT;3x3;t

þ nMSFT;t

PFE;t ¼bPFE;0 þ bPFE;1x1;t

þ bPFE;2x2;t þ bPFE;3x3;t þ nPFE;t

WMT;t ¼bWMT;0 þ bWMT;1x1;t þ bWMT;2x2;t

þ bWMT;3x3;t þ nWMT;t

XOM;t ¼bXOM;0 þ bXOM;1x1;t þ bXOM;2x2;t

þ bXOM;3x3;t þ nXOM;t

t ¼Jan 1995; . . . ;Dec 1999

(30Þ

where x1,t, x2,t, x3,t represent the change in

the consumer sentiment index, the size

premium, and the value premium.17 Table 1

presents the estimates of the coefficients and

Table 2 presents the variance–covariance

matrix estimates of the errors.

If we knew the values of x1,t, x2,t, x3,t for

January 2000, we could use the above

estimates and obtain the distribution of the

active returns for January 2000. As in the

previous section, let us denote the expected

value and the standard deviation of the active

portfolio return as aP and oP. By solving the

minimisation problem of (19), we obtain the

efficient frontier shown in Figure 1.

The exact efficient frontier is obtained

only when we know the exact values of

x1,t, x2,t, x3,t. In practice, this is not possible,

since the exact values of the factors are not

known at the time of portfolio formation

which in our case is the end of December

1999. For the purposes of illustration, we

used the actual January 2000 values of

x1,t, x2,t, x3,t to draw this frontier.

The slope of the figure is the conditional

information ratio. It is conditional on the

value of x1,t, x2,t, x3,t. Using Equation (21)

and the January 2000 values of x1,t, x2,t, x3,t

(which, together with 1, makes x below)18,

IRc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0B^ 0

2S
^�	1

22 B
^

2x

q
¼ 0:8129 (31Þ

where we obtain the values of B̂2 from

Table 1 and the values for Ŝ22
� from Table 2.

When we do not know the values

x1,t, x2,t, x3,t for January 2000, we need to

calculate the unconditional information

ratio. Using the third line of Equation (27),

IR2
u ¼ tr

h
S
^�	1

22 B
^

2V̂ ðxÞB^0
2

i

¼ 0:2242 (32Þ
This is the exact value of the unconditional

information ratio. We can see that this value

Table 1 Coefficient estimates of the linear regression model

Constant Consumer Sentiment Size Value

MSFT 	0.3737 44.9487 6.96 	22.0888
PFE 0.3307 13.4944 	54.5847 6.1705
WMT 0.6035 	19.232 	2.1064 	14.0777
XOM 1.425 	7.7477 28.7622 24.5179

Note: Based on monthly data from January 1995 to December 1999. The dependent variables are in percentage form. That is, 10
indicates a 10 per cent return. The explanatory variables are not in per cent. Thus, a 1 per cent change in the consumer sentiment
index leads to a 0.44 per cent change in the return of MSFT according to the model.
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is not very different from the generalised R2

of the regression, which is

R2 ¼ tr½V̂ ðe2ÞB^2V̂ ðxÞB^ 0
2


¼ 0:2042 (33Þ
That is, in this particular example, the

approximation error is about 0.02, and R2 is

a reasonable substitute for the squared

unconditional information ratio.

Reinterpreting the fundamental law
Once we adopt the idea that the information

ratio is approximately equal to R2, the

fundamental law can be interpreted in a very

simple way. The breadth is the number of

linearly independent explanatory variables in

the linear regression model of active returns,

that is Equation (11), and the information

coefficient is the average contribution of these

explanatory variables in increasing R2.19

There are a group of people who might

disagree with our view of the fundamental

law. We will collectively refer to this group as

our sceptics.20 The sceptics might disagree

with our view in two ways, first through the

measurement of breadth, and second through

the measurement of the information

coefficient. We will discuss each of these

objections in turn.

Our sceptics argue that breadth should

count the number of ‘signals’, not the number

of explanatory variables. Consider, for example,

a variable representing the consensus forecast

of earnings per share. If this is the only

variable used in the model, we would argue

that the breadth is one. Our sceptics would

claim that the number of ‘signals’ can be as

high as a few thousand if the consensus

forecast is based on thousands of analysts.

We reject our sceptics’ view on two

grounds. Firstly, the number of signals cannot

be determined uniquely. Once the set of

variable x is determined, there is no way to

recover the number of signals from the

distribution of x. Neither the mean E(x) nor
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Figure 1 The efficient frontier in terms of aP and oP.

Table 2 Variance–covariance matrix estimates of
the linear regression model

MSFT PFE WMT XOM

MSFT 34.6939
PFE 	5.5209 37.7748
WMT 	21.6087 	13.0777 47.7013
XOM 	2.4188 	0.7983 	6.0301 17.6963

Note: Based on monthly data from January 1995 to
December 1999. The dependent variables are in
percentage form. That is, 10 indicates a 10 per cent
return. The explanatory variables are not in per cent.
Thus, in this table, MSFT has a residual variance of
0.3469 per cent per month.
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the variance–covariance matrix V(x) can tell

us the number of signals. It is easy to show

mathematically that given a vector of random

variable x, there are an unlimited number of

orthonormal vectors y that satisfy x¼Gy,

and the dimension of y (which is the number

of signals in Grinold and Kahn’s framework)

can be essentially anything.

Secondly, and more important, even if we

know the exact number of signals generating

the explanatory variable x, it does not really

matter. Whether the consensus forecast is made

out of 1,000 analysts’ forecasts or out of 100

analysts’ forecasts is irrelevant. All that matters

is the distribution of x (ie the mean and the

variance in the normal distribution model).

Given the distribution of x, other information

about how x was created does not influence

either the information ratio or R2. 21

The second way our sceptics might have

issues with our proposal is through the

information coefficient. Our sceptics often

treat the information coefficient as the average

of the correlation between a stock return and

all explanatory variables. We believe this is an

inappropriate, if not incorrect, interpretation of

the information coefficient. If one looks at the

formula of Grinold and Kahn carefully, it is

clear that the information ratio is the average of

the correlation between all stock returns and an

explanatory variable. The information coeffi-

cient shows the amount of information in each

explanatory variable, not in each stock return.

Given an N	1 dimensional vector of

active returns, e2, and an M dimensional

vector of explanatory variables, x, one can

calculate an (N	1)M number of

correlations. Grinold and Kahn first take the

average across active returns for each

explanatory variable, and obtain M average

correlations.22 Each of these M average

correlations can be called an information

coefficient, reflecting the amount of

information in each explanatory variable.

Only after this step, do Grinold and Kahn

average the M information coefficients.23

Our sceptics’ view amounts to changing the

order of the averaging, first they average

across M explanatory variables, and then they

average across N	1 stocks.

If one takes our view that the information

coefficient reflects the correlation between

an explanatory variable and all stocks, then

one can see the intuition behind our claim

that the information coefficient is the average

contribution of explanatory variables in

increasing R2. The name R2 comes from the

fact that it is the squared correlation

coefficient, which is often denoted by the

Greek letter r. So it is natural to relate the

information coefficient, which is essentially

the correlation coefficient, with R2.24

The fundamental law developed by

Grinold and Kahn states that the information

ratio equals the square root of breadth

multiplied by the information coefficient. In

equation form, it is written as:

IR ¼ IC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Breadth

p
(34Þ

Owing to the unobservable nature of signals,

both breadth and the information coefficient

remain ambiguous items to portfolio managers.

We specify a regression framework in which

actual explanatory variables are used in a

regression model rather than signals. This

allows us to make definitive statements about

the fundamental law. First, the generalised R2

of the regression of factors on stock returns is

approximately equal to the unconditional

information ratio. Secondly, the breadth of the

fundamental law is equal to the number of

explanatory variables used in the regression

analysis, and thirdly, the information

coefficient is simply the average contribution

of the explanatory variables in determining R2.

In the example we provided in the previous

section, the breadth is 3 and the information

coefficient (IC) is 0.2609 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2042=3

p
Þ.

For portfolio managers who use linear

regression models to form portfolios, this

formulation should clarify the link between

their models and the expected information

ratios. For portfolio managers who do not

use linear regression models, but use other

techniques, this formulation might be useful

in that it offers them another equivalent

Another look at the information ratio
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approach using regression analysis. For

example, suppose a portfolio manager creates

a portfolio based upon stocks whose analyst

ratings increased over the last month. To

understand the information ratio of such a

portfolio, an equivalent approach would be

to run a linear regression of stock returns

against a dummy variable indicating whether

the average analyst rating went up or down

for that stock (ie a value of 1 for stocks whose

average analyst rating went up and a value of

0 for stocks whose average analyst rating

went down). And in this case, breadth and

the information coefficient would be

observable quantities, rather than an

unknown, ambiguous concept.25

Conclusion
The information ratio is an important

concept for active portfolio managers.

Grinold and Kahn popularised a concept

known as the fundamental law of active

management which decomposes the

information ratio into two components.

One component is commonly known as

breadth and the other component is

commonly known as the information coefficient.

These terms, especially breadth, however are

not truly observable quantities. Thus,

portfolio managers and analysts are confused

with how to accurately compute breadth.

We offer a new approach to the

decomposition by linking a simple

econometric model of security returns with

the information ratio. We show that if

security returns are indeed driven by

portfolio factor models, the fundamental law

can be interpreted in an observable and

practical way. We do this by showing that the

R2 of the regression of security returns on

factors is approximately equal to the squared

information ratio.26 That is, IR2ER2.

From this perspective, breadth and the

information coefficient take on a very

specific meaning. Breadth will always equal

the number of factors that the portfolio

manager or analyst uses to predict stock

returns and the information coefficient

is the average contribution of each factor

to the forecasting regression. For example,

if a portfolio manager believes that k

factors predict stock returns and runs

a linear regression of stock returns against

these factor realisations over time, the

R2 of this regression is the best guess

at the unconditional information ratio

of the model and the breadth is k,

while the information coefficient will equalffiffiffiffiffiffiffiffiffiffi
R2=k

p
.

Thus, practically portfolio managers can

only improve the information ratio if they

can improve the R2 of the regressions, which

can be done by finding more relevant or

better predicting factors or by increasing the

number of factors, without decreasing the

average contribution of the factors. Beyond

that, there is no special recipe to increase the

information ratio.

Notes
1. The exposition of the fundamental law has a somewhat

different ‘flavour’ in their 1989 article and in their 1999

book. We take the exposition of the 1999 book as our

point of departure.

2. William Sharpe himself commented on this as well in his

Sharpe (1994) article.

3. Both Clarke et al. (2002) and Buckle (2004) defined the

information coefficient as the correlation between an

asset return and the aggregated predictor of that return.

That is, one information coefficient is defined for one

asset. This is significantly different from how Grinold and

Kahn defined the information coefficient in their 1999

book. In the book, Grinold and Kahn defined the

information ratio as the correlation between an asset

return and one forecasting variable. That is, in the model

of Grinold and Kahn, one information coefficient is

defined for one forecasting variable.

4. In Chincarini and Kim (2006), we did not provide a

rigorous proof of this argument, partly due to the nature

of the publication. The current paper is our first attempt

to present a rigorous proof of the argument.

5. When we refer to two ratios being equal or

approximately equal, we are referring to ratios in the

matrix mathematical equivalent form.

6. While there was an attempt to make it measurable (eg

Buckle, 2004), the resulting formula was rather

complicated and not very intuitive.

7. This decomposition is similar to equation (4).

8. It is also the maximum information ratio, but we will not

include this in the name from this point forward.

9. In mathematical jargon, we can ‘integrate out’ x and

produce a formula that is independent of the value of x.
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10. This is of course different from defining the

unconditional information ratio without taking a square.

That is,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ExðIR2

c Þ
p

is different from Ex(IRc).

Nonetheless, our main ideas are not affected by this

technicality.

11. In general, the expected value of a function of X does not

have to be zero even though the expected value of X is

zero.

12. The ex ante/ex post distinction is used in at least two

occasions. Some people use the ex ante/ex post

terminology to distinguish ‘an estimator’ from ‘an

estimate’. An estimator is a formula whose value has not

been determined yet. Once we have a real data set and

calculate a specific value of an estimator, the specific value

of the estimator is called an estimate. The IR is a formula,

whose value needs to be computed from various

parameters. Until specific values of the parameters are

determined, a specific value of IR cannot be determined.

At this stage, the IR is an estimator. Only after we obtain

specific values for the parameters from a data set, can we

determine a specific value for the IR. Once a specific

value of the IR is determined, we may call this value an

estimate. Some people use the term ‘ex ante IR’ to refer to

IR as an estimator, and ‘ex post IR’ to refer to IR as an

estimate. This distinction is independent from the

conditional/unconditional distinction. If we take this

particular interpretation of ex ante and ex post, we can

think of ‘ex ante conditional IR’ (conditional IR as an

estimator), ‘ex post conditional IR’ (estimate of

conditional IR), ‘ex ante unconditional IR’,

(unconditional IR as an estimator) and ‘ex post

unconditional IR’ (an estimate of unconditional IR).

Others use the ex ante/ex post terminology in a

chronological sense. That is, if the real portfolio is not

created yet, all the quantities calculated are ex ante. If the

real portfolio has been already created, all the quantities

calculated are ex post. This distinction is not identical to

the conditional/unconditional distinction. What matters

in the conditional/unconditional distinction is whether

the latest values of the explanatory variables are known or

not. Whether this is the case is independent of whether

the real portfolio has already been created.

13. It is easy to show that the ratio of aP to oP is not

influenced when the portfolio weight vector is multiplied

by a scalar.

14. If y is a scalar, equation (26) returns the standard R2.

15. If we let RSS/TSS¼ x, then the approximation error is

x2/1	x. For example, if x is about 1 per cent, then the

approximation error is about 0.01 per cent. If x is about

10 per cent, then the approximation error is about 1 per

cent, which is still reasonable.

16. In our particular example, we use data from January 1995

to December 1999.

17. For the size premium and the value premium, we use the

variables created and distributed by Eugene Fama and

Kenneth French.

18. In econometrics, the first column of the matrix is usually

equal to one to account for the constant term in the

regression.

19. The proof of this concept has already been presented in

Chincarini and Kim (2006), thus we will focus on two

aspects that were not fully explored by their work.

20. Grinold and Kahn (1999) might disagree with our view

that breadth is simply the number of explanatory variables

in the regression, rather than the number of signals.

Clarke et al. (2002) and Buckle (2004) might disagree

with our view that the information coefficient is the

average of the correlation between all stock returns and an

explanatory variable.

21. All that is important for portfolio construction in x is

included in the distribution of x. If x and z have the same

distribution, it does not matter whether x and z are

different variables. Both x and z will have an identical

effect on the portfolio construction process. All

computations will be identical. Thus, any other

information we know about x other than the distribution

is unnecessary as far as portfolio construction is concerned.

22. Grinold and Kahn calculated the correlations after

orthonormalising e2 and x, but this orthonormalisation

does not affect our argument, so we ignore it.

23. Grinold and Kahn assumed that the M information

coefficients are identical. This is really not an assumption.

What Grinold and Kahn really did was take the average of

M information coefficients.

24. In general, the correlation among explanatory variables

also matters in the calculation of R2 and possibly IC. In

the framework of Grinold and Kahn, all explanatory

variables are independent from one another due to their

orthogonalisation procedure. So the correlation among

explanatory variables is zero. In our framework, this is not

the case. However, the correlation among independent

variables still do not influence average IC. This is so

because the correlation among explanatory variables will

cancel out one another through the averaging process.

25. We note that the fundamental law, both the new and old

interpretation, is valid only if the portfolio manager

creates an optimal portfolio. That is, improving breadth

and the information coefficient may not result in higher

performance if the portfolio is not optimal.

26. Our formulation is only an approximate relationship, as

was the original Grinold and Kahn derivation; however,

we added no new assumptions beyond their original

assumptions.
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