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ABSTRACT 

The Black-Litterman model has gained popularity in applications in the area of quantitative equity portfolio manage- 
ment. Unfortunately, many recent applications of the Black-Litterman to novel aspects of quantitative portfolio man- 
agement have neglected the rigor of the original Black-Litterman modelling. In this article, we critically examine some 
of these applications from a Bayesian perspective. We identify three reasons why these applications may create losses 
to investors. These three reasons are: 1) Using a prior without “anchoring” the prior to an equilibrium model; 2) Using a 
prior and an equilibrium model that conflict with one another; and 3) Ignoring the implications of the estimation error of 
the variance-covariance matrix. We also quantify the loss first analytically and also numerically based on historical data 
on 10 major world stock market indices. Our conservative estimate of the loss is around a 1% reduction in the annual- 
ized return of the portfolio. 
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1. Introduction 

The Black-Litterman model is a powerful tool in the 
portfolio construction process. It has gained popularity 
among practitioners for the past two decades, and its ap- 
plications to various aspects of the portfolio construction 
process have been discussed in the literature. We believe, 
however, that some of the applications adopted by practi- 
tioners and discussed in the literature deserve more criti- 
cal examination. In this paper, we will highlight the uses 
of the Black Litterman model that we find problematic, 
or at least lacking the vigor of the original formulation of 
the Black-Litterman model. We will present numerical 
examples to make our case stronger and, where appropri- 
ate, will propose alternative approaches. 

Black and Litterman [1,2] saw two strengths of their 
approach: 

1) The subjective views of the investors can be easily 
incorporated in the portfolio construction process.  

2) The Black-Litterman mean-variance optimization 
does not produce unreasonable solutions, as the standard 
mean-variance framework does.  

The first of these two comes from the feature of the 
model that investors’ subjective views are expressed as 
linear combinations of expected returns of assets, rather 

than as expected returns of individual assets. That is, the 
subjective view need not be an exact value of the ex- 
pected return of an individual asset, but rather can be 
expressed as the expected return of two assets or more in 
relation to each other. This type of formulation is easier 
for investors to apply. The second strength comes from 
the model’s feature that the investors’ subjective views 
are combined with an equilibrium model that tilts the 
portfolio weights away from the market capitalization 
weights based on the relative uncertainty in the investor’s 
views. This anchors the portfolio weights towards the 
implied market capitalization weights, thus not allowing 
for extreme weights due to differences in expected re- 
turns. 

Out of these two features, the first feature is less es- 
sential to the Black-Litterman model. It is relatively easy 
to come up with an alternative way of specifying invest- 
tors’ subjective views.1 The spirit of the Black Litterman 
model can be retained from a variety of subjective prior 
specifications. The second feature, however, is much 
more significant. An attempt to modify this feature of the 

1The Black Litterman model allows an expression of subjective views 
such as “the sum of asset A return and asset B return will be positive.”
That is, it allows the investor to make a statement on a linear combina-
tion of many asset returns. If this type of statement is not allowed, one 
may have to be more explicit. An example is: “asset a return is likely 
to be around 10% while asset B return is likely to be around 5%.”

*We would like to especially thank Josh Ruben for research assistance. 
We also thank Frank Fabozzi for comments. 
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model is likely to introduce inconsistencies. The reason 
is that there is really only one right way to combine in- 
vestors’ subjective views with a given model, and there 
is no other correct alternative. One may choose different 
views or different models, but once the views and a 
model are chosen, there is only one way to combine them 
according to Bayes’ rule. 

Some applications of the Black-Litterman model by 
other authors have attempted to modify the second fea- 
ture of the model, and, in doing so, they have lost the 
mathematical rigor of the original Black-Litterman mo- 
del. Other applications have simply ignored the nature of 
the subjective view and mixed it up with the model in an 
inconsistent manner. 

In this paper we discuss three representative (mis-) 
uses of the Black-Litterman model in portfolio construc- 
tion. We will attempt to quantify the possible losses cre- 
ated by the misuse of the model and, where appropriate, 
propose an alternative.2 The first application we consider 
was discussed in Jones, Lim, and Zangari [4].3 We will 
argue that their approach could create a loss to investors 
because the prior is not “anchored” to an equilibrium 
model. More specifically, the estimate of the mean return 
from the model is not included in the process, making the 
prediction of the mean return less than optimal. The sec- 
ond application we consider was discussed in Fabbozi, 
Forcardi, and Kolm [5]. We will argue that their ap- 
proach could create losses to investors if the prior and the 
equilibrium model conflict each other. The third applica- 
tion we consider is the so called reverse optimization, 
which is quite popular among practitioners. We will ar- 
gue that this reverse optimization could have surprisingly 
large errors in the resulting mean estimates. 

In this article, we take a Bayesian perspective. A Ba- 
yesian perspective allows us to quantify the losses of 
investors without too many complications in the analysis. 
We borrow the framework of Satchell and Scowcroft [6], 
and extend it so that investors’ loss can be discussed. 

The paper is organized as follows: Section 2 discusses 
the use of the Black-Litterman technique without an 
equilibrium model, and the potential losses associated 
with that methodology; Section 3 discusses the use of the 
Black-Litterman model with data based priors that con- 
flict with the model, and the loss associated with that 
methodology; Section 4 discusses the use of the Black- 
Litterman approach as a reverse optimization and the 
implication of using an estimated variance-covariance 
matrix; and Section 5 concludes the paper. 

2. Using the Black Litterman Approach  
without an Equilibrium Model 

2.1. How It Is Usually Done 

Jones, Lim, and Zangari (2007; henceafter JLZ) pre- 
sented a way in which the Black Litterman model can be 
used to incorporate a factor-based view in a structured 
equity portfolio. 

Let  be an -dimensional portfolio weight vector, 
where the -th element i  is the portfolio weight of 
asset . Let  be an -by-  factor exposure ma- 
trix, where 

w

i

N
i w

NB K
 ,i j  element ,i jb  is the exposure of stock 

 to factor .4 Then the factor exposure of the portfolio 
is 
i j

B w . A portfolio manager’s factor view can be 
expressed as a K -dimensional vector  , which is the 
portfolio manager’s desired value of B w .5 

JLZ suggest the following steps for the portfolio 
construction:  

1) Specify the factor view vector  . 
2) Calculate the optimal tilt portfolio weight, i.e. the 

weight of the portfolio that is optimal given the factor 
view vector. That is, solve: 

ˆmin s.t.Σ
w

w w B w              (1) 

where  is an -by-  variance-covariance matrix 
estimate of asset returns. The solution to this problem is 

Σ̂ N N

  1
1 1ˆ ˆΣ Σw B B B OTP

             (2) 

where OTP is an acronym for optimal tilt portfolio.6 
3) Compute the Black Litterman alpha, i.e. the ex- 

pected return that produces the optimal tilt portfolio 
identified in the previous step. That is, solve the follow- 
ing equation for  : 

1 ˆargmax
2

Σw w OTP    w w          (3) 

The solution to this problem is7 

Σ̂wBL O TP                  (4) 

4). Find an optimal portfolio based on the Black 
Litterman alpha, BL , and any other constraints using a 
standard mean variance optimization. For example, an 
optimal portfolio can be found by solving the following 
quadratic programming problem: 

1 ˆmax
2

s.t. 1 , 1, ,

Σ
w

w w w

w ι

BL

i i il w u i N

 

     
     (5) 

4In many applications, B  is a matrix of observable characteristics. 
5Portfolio managers may determine the value of   based on their 
expectation of “factor returns.” For example, if they expect the size of 
return to be high, they may choose a large value for the size exposure.
6The derivation of this result and other results is included in an appen-
dix available at  
http://papers.ssrn.com/sol3/papers.cfm?abstract_id = 2191278. 

2Chincarini and Kim [3] examined other situations in which improper 
portfolio construction led to utility losses to the investor. 
3We are not implying that the researchers we cite were unaware of the 
problems we are raising. In fact, the applications we discuss were not 
the main point of their articles, which explains why the problems we 
discuss now did not receive full attention in their article. 
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where i  and  are lower and upper bounds on asset 
 weights.8 

l iu
i

In the four step procedure described above, no explicit 
reference is made to an equilibrium model, which is an 
integral component of the original Black-Litterman mo- 
del. In fact, there is no explicit reference to any model of 
stock returns. 

Implicitly, though, the above procedure requires a 
model to produce an estimate . Even when one deci- 
des to use a historical variance-covariance matrix for , 
one is using a model. The implicit model is that the 
historical variance-covariance matrix is a good estimator 
of the true variance-covariance matrix. 

Σ̂
Σ̂

Using a model to produce an estimate  and using 
the estimate in calculating the Black Litterman alpha, 

Σ̂

BL , however, is not equivalent to “combining a sub- 
jective view with an equilibrium model” as is done in the 
original Black Litterman model. The problem with this 
approach is that the model is used only to produce an 
estimate of the variance-covariance matrix. This approa- 
ch ignores the information in the data about the mean 
return.9 The consequence is that a subjective view is 
combined with a model, but only partially and incom- 
pletely. The incompleteness does create a problem, as 
will be shown in the next sub-section. 

α

2.2. The Cost of Ignoring Mean Estimates 

The JLZ procedure calculates the Black Litterman alpha, 
BL , based on a view and a model. The view is sum- 
marized in   and the model is summarized in an esti- 
mate of . As mentioned above, however, the view and 
the model are not combined in an efficient way. In 
particular, the mean component of the model is ignored. 
This creates some loss, the magnitude of which we will 
quantify in this subsection. 

Σ

We first discuss our measures of loss. In order to 
measure an investor’s loss, we need to develop a formal 
model of returns and investor views. In the subsequent 
text, we discuss a measure of loss based upon a formal 
model of returns and views. 

2.2.1. A Measure of Loss 
One can quantify the loss generated in a portfolio con- 
struction process in terms of the Sharpe ratio, the infor- 
mation ratio, or an investor’s utility. For the purpose at 

hand, the most natural choice is to use the investor’s util- 
ity implicit in the Black Litterman approach, which is 

  2,
2

U
                  (6) 

where   is the mean return of the portfolio and   is 
the standard deviation of the portfolio return. In par- 
ticular, we will set the value of   to 1 , as was done in 
the JLZ procedure.10 Given the utility function, we can 
calculate the highest utility one can achieve given the 
model and the view, and we can also calculate the utility 
that one actually achieves. The difference is our measure 
of the loss. 

To compute the utility, we will use the  predictive 
mean and variance based on the model and the view. 
This is justified as our primary interest is in the in- 
vestor’s portfolio construction strategy, not the validity 
of the investor’s belief. In addition to this, the predictive 
mean and variance are the only mean and variance that 
the investor can actually calculate. It would not make 
sense to define the investor’s utility in terms of the 
quantities that are not known to the investor.11 

If a portfolio construction process combines the model 
and the view efficiently, then by construction the loss is 
zero. This is true in the original Black Litterman approa- 
ch. It is not possible to improve the utility given the 
model and the view. In the JLZ procedure, however, it is 
possible to improve the utility given the model and the 
view. It is possible to do so by adding the mean com- 
ponent of the model, as we will show below. 

2.2.2. The Model and the View 
Consider the following model: 

1 1 1

1
, 0,t t t t eN

h  
  
 

r B f e e V 
        (7) 

where 1tr  represents the vector of stock returns, tB  
represents the N K  matrix of factor exposures for  
factors and  stocks, and  is a  vector of  

K
N f 1K 

factor premiums, 1te  is the error vector, and 
1

eh
V  is  

the covariance matrix of the error. We include a scalar 
 that affects the overall volatility of the market. h
While this model is not explicitly stated in the four 

step procedure outlined in the previous section, this is 
probably the most natural model for the JLZ investor, if 
he were forced to adopt one. (Recall that the lack of an 
explicit model is one weakness of the JLZ procedure.) 
Without a model of this kind, it would be hard to mo- 

8Without the constraints, the solution to this optimization would be the 
optimal tilt weights, . OTPw
9One might argue that means are typically not estimated accurately, 
and that ignoring the mean estimate is not a big deal. However, a vari-
ance estimate does not have the same meaning if one ignores the mean 
estimate. Recall that the variance measures the deviation from the 
mean. Without specifying a mean, a variance is an incomplete concept. 
One might end up making a decision as if the true mean is zero, which 
can be worse than using an imprecisely estimated mean. 

10Our main arguments are not affected by the value of  , nor by the 
choice of how loss is measured. 
11See the discussion preceeding Equation (14) for an example of alter-
natives that we did not take. 
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tivate a factor tilted portfolio using the JLZ procedure.12 
The variables  and 1tr tB  are observable, while   f

and  are not observable. The error variance 1te
1

eh
V  is  

not known either. Before creating a portfolio for , 
the investor observes  1  and 1  
and also T

+1T

0 , , T B, , Tr r B  
B . With these data, the investor must de- 

termine the distribution of 1T r , by estimating , , 
and , or by updating his belief about these quantities. 

f h

e

The JLZ procedure introduced 
V

  to capture the 
investor’s belief.   is the desired tilt to specific factors, 
which depends on the investor’s belief about factor 
returns. Rather than consider the prior of (i.e. distribution 
of possible values of)  , we consider the prior of factor 
returns. While this approach may seem like an unnece- 
ssary detour, it makes the analysis much more tractable. 

We interpret   in the context of the following prior 
of  and : f h

 

1
,

,

f fh N
h

h G p q

 



f m






V
             (8) 

That is,  has a multivariate normal distribution 
conditional on , and  has a Gamma distribution.13  

f
h h

By including 
1

h
 in the variance of , we are  f

assuming that the overall uncertainty of the factor 
premium is proportional to the overall market volatility.14 
This is the simplest prior one can adopt, and is general 
enough for our purpose. Satchell and Scowcroft (2000) 
also use this prior when they interpret the Black Lit- 
terman model. Note also that this prior allows for the 
noninformative prior as a special case, as will be shown 
in the next section. 

It is easy to show that   is related to the parameters 
in Equations (7) and (8) in the following way: 

1ΣB Bm f
                  (9) 

where  is the variance-covariance matrix of Σ 1T r , i.e.,  
1 1

T f T eE
h h

    
 

B V B V .15 

Equation (7) represents the model, and Equation (8) 
represents the investor’s view. And together, they des- 
cribe the belief system of the JLZ investor completely. 

Let us be clear about our distinction between the 
model and the view. The model specifies the relation- 
ship among variables that we observe. The view is about 
the quantities that we do not observe. In particular, the 
view specifies the relationship among parameters of the 
model. The view has hyper-parameters, whose values 
investors choose on their own. In Equation (7), there are 
three parameters: . In Equation (8), there are 
four hyper-parameters: . The distinction 
between the parameters and the hyper-parameters can be 
made clearly: parameters are a part of the model, while 
hyper-parameters are a part of the view. 

, ,e hf V
, , ,f f p qm V

These concepts might be clearer if we describe them in 
a series of steps. 

1) All the equations are known to everyone;  
2) At the beginning of our portfolio formulation stage, 

God decides the value of the hyper-parameters  
. God announces this decision to every 

investor;  
, , ,f f p qm V

3) On day 1, God draws parameters  using 
Equation (8). These quantities are never known to the 
investor;  

, ,e hf V

4) On day 2, God draws data ,   1, , Tr r
 0 , , B B 1T , and also TB , and shows them to the 
investor;16 

5) After observing data, the investor estimates the 

15   is the factor tilt implied by the investor’s view and the model. 
Thus, we can find an optimal portfolio given the investor’s view and 
the model, and determine the factor tilt of that portfolio, which should 
be  . Given the investor’s view and the model, the unconditional 

distribution of 1T r  is 

 1 ,Σr B mT T fN                    (10)

where  is the variance-covariance matrix of Σ 1rT  , i.e., 

1
12JLZ do mention this model and even suggest to use it to determine 
the view. We will discuss the problem of using a data based view in 
the next section. For now, we interpret the view as completely inde-
pendent from the data. 
13The Gamma distribution makes the analysis tractable. The Gamma
distribution, when used with normal distribution, has the property that 
the posterior will be of the same type of distribution as the prior. Due 
to this property, the Gamma-Normal prior is called a conjugate prior, 
and is widely used in Bayesian analysis. We follow the parameteriza-
tion of the Gamma distribution used by Koop (2003). The pdf of the 
above distribution is 

1
2 1

22
2

2

q
h qq

pp q
h e

q

 
      

  
 

14This aspect of the prior is required for a conjugate prior, i.e. a prior 
that leads to a posterior of the same distribution. Using a conjugate 
prior makes our analysis simple, but the conclusion of our analysis 
does not depend on a conjugate prior. 

1
B V BT

  VT f eE
h h

 
 
 

. If the investor has the utility function specified 

in Equation (6) with   equal to 1, then the optimal portfolio, given 
the above distribution, can be found from the following optimization:

1
max

2w
w B m w ΣwT f
  

m

               (11)

The solution to the above problem is 
1Σw BT f

                      (12)

From the factor tilt of this portfolio, we can obtain Equation (9). This 
comes from the second equation in the maximization problem, that 

0B w λ  
λ

. Thus, substitution of Equation 12 gives  
1ΣB w B   B mT f

 . 
16Note that, in our analysis, B ’s are matrices of observable character-
istics, not estimates of factor loadings. Estimation error does not arise 
as far as B ’s are concerned. 
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parameters, makes a prediction of , and creates a 
portfolio;  

1T r

6) On day 3, God draws 1T r  using Equation (7);  
7) After observing , the investor calculates his 

portfolio return.  
1T r

In this scheme, one could think of a number of dif- 
ferent expectations and variances of the portfolio return. 
Let us consider three of them. First, we can think of 
“God’s expectation,” which is conditional on the true 
value of parameters , , and eV . Since only God 
knows the value of , , and e , this expectation is 
probably not very interesting to our hypothetical investor. 
Second, we can think of the “predictive expectation,” 
which is conditional on the data as well as on the hyper- 
parameters, but not on the true value of the parameters. 
That is, it is the expectation based on the investor’s best 
prediction given the information available. This is some- 
thing rational investors can calculate. Third, we can think 
of “an economist’s expectation,” which is conditional 
only on the hyper-parameters . This is the 
expectation one obtains by imagining many different 
worlds where different parameters could have been 
chosen from the same hyper-parameters. To investors who 
live only once, this concept is not particularly interesting. 
Their utility does not depend on what could have hap- 
pened in other worlds. This concept, however, could be 
interesting to economists who want to make general 
statements about certain decision making schemes. Note 
also that “an economist’s expectation” is obtained if we 
integrate the data out of the “predictive expectation.”17 

f
f

h
h V

, ,f fm V ,p q

Our analysis is based on the “predictive expectation” 
and similar concepts, as we are working with a utility- 
based measure of loss. Predictive expectation is condi- 
tional on the value of the hyper-parameters. Thus, an 
analysis of predictive expectation can be influenced by 
the choice of hyper-parameter values. In our numerical 
analysis, we vary the values of the hyper-parameters to 
make sure that our results are robust, and that they are 
not peculiar to the chosen values of the hyper-para- 
meters. 

We provide the formula for the predictive mean and 
the predictive variance-covariance matrix of the returns 
here without proof.18 The predictive mean and the predic- 
tive variance-covariance matrix of returns are obtained 
by applying statistical operators to the model and then 

using the Bayesian updating formula (see Zellner [7] and 
Koop [8]). Let us denote the predictive mean of the 
return as  1TE r  and the predictive variance-cova- 
riance matrix of the return as . Then  1TV r 

   
    

1

1 1

T T

T T T T

E E

V V V



  

r B

r B f B e

 

  
 f


        (14) 

The predictive mean of the factor premium  E f , 
the predictive variance-covariance matrix of the factor 
premium  V f , and the predictive variance-covariance 
matrix of the error  1TV e  are determined by the 
Bayesian updating formula: 

   
 

  

 
 



11 1

11

1

ˆ̂

1

2
1

f V S V m S f

f V

e

f B f f B

f B

T e

E

q NT
V

q NT E h

V V
E h

 

S




    
 


 

 








 


    (15) 

The first equation simply says that the predictive mean 
of the factor premium is a “precision-weighted” average 
of the prior mean fm  and the GLS estimator . The 
second and the third equation simply break down the 
components of the variance-covariance matrix. The pre- 
dictive mean of the error precision parameter 

ˆ̂
f

 E h  can 
be expressed as follows:19 

 

  11

1

1 ˆ ˆˆ ˆS m f V S m fe f f B f

E h

q

q NT p


             

      



(16) 

2.2.3. An Analytic Formula for Loss 
Now we are ready to compare the utility of an investor 
who follows the JLZ procedure (the JLZ investor) to the 
utility of a rational investor who combines all infor- 
mation efficiently (the RTL investor), both having the 
same view and the same model. We first discuss the 
utility of the two investors in general form. Then we 
examine a special case where we can provide an analytic 
solution for loss. 

Let us first characterize the utility of the RTL investor. 
As noted before, the investor would not consider fBm  

17That is, 

 
   

portfolioreturn hyperparameters

portfolioreturn hyperparameters ,data data

E

E p 
    (13)

where  is the probability density function of the data. The 

integration is taken over the data. In other words, if we average the 

datap

19The GLS estimator of the factor premium  is 
ˆ̂
f

  11 11

10 0
ˆT T

t e t t e tt t

  1ˆ 
 

  BV B BV r , its precision matrix BS  is  

1 1

0
ˆT

t e tt

 


 BV B , and the error sum of square matrix eS  is  

, where  is  
1 1

10

ˆ̂ ˆT

t t e tt

 


  
  r B f V r B1

ˆ
t

  
 

f



predictive expectation over all the possible values of the data, then we 
get an economist’s expectation. 
18The derivation of this result is included in an appendix available at 
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2191278. 

ˆ f̂

  11 1

10 0

T T

t t t tt t

 

 
  B B B r V, and  is ê  1

ˆ
t t  1

ˆ
t t

p

T 

1

=0

T

t

  r B fr B f . 

Copyright © 2013 SciRes.                                                                                 JMF 



L. B. CHINCARINI, D. KIM 158 

to be the best estimate of the mean return, nor would he 
consider the Black Litterman alpha implied by the 
optimal tilted portfolio to be the best estimate of the 
mean return. Using the Black Litterman alpha would be 
equivalent to not using any information from the esti- 
mation about the mean return. Instead, the RTL investor 
would estimate the mean and the variance-covariance 
matrix of returns using all the information available, and 
then choose a portfolio based on these estimates. 

The best estimates of the mean and of the variance- 
covariance matrix of the returns are the predictive mean 
and the predictive variance-covariance matrix described 
above. Given the predictive mean and the predictive 
variance-covariance matrix of the return, the rational 
investor will choose the portfolio by solving the optimi-  
zation problem comparable to Equation (5). Then his 
utility is determined as:20 

   1

1

2 1RTL RTL T RTL T RTLU E V  w r w r w       (17) 

where 

   1

1
argmax

2
s.t. 1, , 1, ,

RTL T T

i i i

E V

l w u i N

  

    

ww w r w

w ι

 



1r w
    (18) 

Now let us consider the utility of the JLZ investor. The 
JLZ investor would follow the four steps specified in the 
previous section. Thus, her portfolio is the solution to 
Equation (5), and her utility is determined from the mean 
and the variance of her portfolio. That is, 

   1

1

2 1JLZ JLZ T JLZ T JLZU E V  w r w r w       (19) 

where 

    
11

1

argmax

1

2
s.t. 1, , 1, ,

ww

w B B r B w r w

w ι



JLZ

T T T T T

i i i

V V

l w u i N






 

    





1 

1

    (20) 

Computation of the loss based on the above utility can 
be done numerically, which we explain in the next sub- 
section. For now, we will present an analytic solution for 
the special case where there are no constraints in the op- 
timization. Although, this is not a realistic way of con- 
structing an optimal portfolio, it will help illustrate some 
key concepts. 

Let us start with the rational investor. When there are 
no constraints, the solution to the optimization problem 
in Equation (18) is simply 

  1

1RTL T TV E


w r r             (21) 

Then the utility is given by 

    1

1 1

1

2RTL T T TU E V E


   r r r   1         (22) 

Now let us calculate the utility of the JLZ investor. 
When there are no constraints, the portfolio of the JLZ 
investor is simply the optimal tilted portfolio of Equation 
(2). Combining Equation (2) and Equation (9), we get 

 
    

1

1 1

1

1 1

w r B m

w r B m f

JLZ T T f

RTL T T f

V

V E


 


 



  



 
      (23) 

Note that we made one simplifying assumption to get 
the above formula. Firstly, we assumed that the JLZ 
investor’s covariance estimate of returns  is iden- 
tical to the rational investor’s covariance estimate of 
returns 

 Σ̂
  1TV r

Σ̂
. Since we did not specify how the JLZ 

investor obtains , we chose the one that was the best 
and most advantageous to the JLZ investor. In other 
words, by doing this we eliminated one mistake that the 
JLZ investor made, i.e. using an inferior estimate of the 
error covariance. 

Now we can express the utility of the JLZ investor in 
the following way: 
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The above formula shows that the difference in utility 
between the JLZ investor and the RTL investor, i.e. the 
loss, is quadratic in the difference between the prior 
mean and the posterior mean of the factor premium. This 
can be understood intuitively. When one ignores the 
mean estimates, the portfolio weights deviate from the 
optimal weights and the deviation is linear in the differ- 
ence between the prior mean and the posterior mean. The 
utility, however, depends on the second moments of the 
portfolio returns, so the loss is quadratic in the difference 
between the prior mean and the posterior mean. 

2.2.4. Investor Simulations 
In order to quantify the losses from an incorrect pro- 
cedure, we perform a numerical simulation. 

The simulation is based on the monthly returns and 
other characteristics of the MSCI country indices.21 
Specifically, we select the top 10 countries by market 
capitalization. We used the price-to-earnings ratio, 6 
months momentum return, and the market capitalization 
of the indices as factors in our factor model. Our data set 

21We could have carried out the simulations at the individual stock 
level. All our formulas would work at the individual stock level as 
well.

20Recall that we evaluate the utility in terms of predictive mean and 
variance. 
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spans the 7-year period from September 2001 to August 
2008. The summary statistics of the variables for each 
country are presented in Table 1. 

For the simulation, we use the Chi-square distribution 
for the error precision parameter . The Chi-square 
distribution is a special case of the Gamma distribution, 
and all the formulas presented above are still applicable. 
The model and the prior now look as follows: 

h

1 1 1

1
, 0,t t t t N

h  
  
 

r B e

f e e V       (25) 
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The simulation proceeds according to the following 
steps.22 

1) We choose a reasonable value for the hyper 
parameters ;  , ,f f pm V

2) We draw a single value of parameters  and  
using the hyper parameters above. We use the OLS 
estimator for the remaining parameter ;  

f h

e

3) We draw  from the parameters deter- 
mined above. For the factor exposures 

V
 1, , Tr r 

 0 1, , T B B  
and TB , we use historical values;  

4) Given the values above, we determine the portfolio 
of the JLZ investor and the RTL investor;  

5) We calculate the loss;  
6) We repeat Steps 2 to 5 a 1000 times, without 

changing the hyper parameters. Then we obtain a distri- 
bution of losses, which will allow us to make general 
statements about the JLZ investor’s decision making 
process;  

7) We repeat the above six steps by making small 
perturbations to the hyper parameter values.  

The outcome of the simulations is summarized in 
Tables 2 and 3. A figure of the actual losses in 1000 
simulations is shown in Figure 1. The magnitude of the 
loss is fairly stable across various sets of hyper parameter 
values. The mean loss is between 0.10 and 0.15, while 
the median loss is between 0.06 and 0.11. As the loss is 
the difference in the quadratic utility, we could interpret 
the loss as a reduction in the expected monthly return. 
That is, the loss of the JLZ investor amounts to about a 
0.1% reduction in the expected monthly return. This 
would imply a fairly conservative estimate of the return 
loss as 1.2% annually.23 

Table 1. Summary Statistics of Returns and Factor Expo- 
sures. 

Country Variable Nobs Mean SD Min Max

Australia Return 84 1.50 4.95 −12.57 14.84

 Market Cap 84 5.04 2.27 2.02 10.13

 P/E 84 18.01 2.17 13.51 24.02

 Momentum 84 11.39 11.46 −14.33 33.07

Canada Return 84 1.46 4.88 −11.26 9.78

 Market Cap 84 6.74 3.16 2.69 12.68

 P/E 84 19.95 4.04 16.09 32.53

 Momentum 84 10.12 12.76 −19.41 33.30

France Return 84 0.83 5.11 −15.34 15.63

 Market Cap 84 9.21 3.25 4.28 15.05

 P/E 84 23.28 13.66 10.70 70.26

 Momentum 84 5.96 13.64 −29.15 33.91

Germany Return 84 1.06 6.66 −24.35 23.42

 Market Cap 84 6.93 2.94 2.69 13.09

 P/E 84 19.50 27.84 −211.30 68.96

 Momentum 84 7.45 18.67 −39.44 50.42

Italy Return 84 0.76 5.00 −13.78 13.62

 Market Cap 84 3.60 1.12 1.78 5.52

 P/E 84 17.92 4.89 9.83 38.65

 Momentum 84 5.87 13.16 −26.41 28.19

Japan Return 84 0.46 4.62 −9.34 13.43

 Market Cap 84 20.50 6.70 10.19 30.31

 P/E 84 15.09 55.45 −175.67 109.71

 Momentum 84 3.03 16.01 −32.99 36.54

Spain Return 84 1.31 5.57 −16.19 14.79

 Market Cap 84 3.56 1.43 1.44 6.18

 P/E 84 15.28 1.83 9.90 18.79

 Momentum 84 9.69 14.24 −26.17 36.12

Switzerland Return 84 0.85 3.76 −12.02 11.35

 Market Cap 84 6.55 1.84 3.88 9.55

 P/E 84 20.33 4.49 12.92 32.88

 Momentum 84 6.04 11.30 −19.37 26.98

UK Return 84 0.69 3.88 −10.35 10.40

 Market Cap 84 22.42 6.00 13.29 33.61

 P/E 84 14.47 2.23 9.88 19.71

 Momentum 84 5.22 11.59 −19.04 27.67

USA Return 84 0.33 3.71 −11.33 9.04

 Market Cap 84 105.25 21.13 66.22 140.48

 P/E 84 20.79 4.77 15.69 34.60

 Momentum 84 1.98 10.49 −29.37 22.93
22Further details about the simulation procedure are provided in an 
appendix available at  
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2191278. 
23This estimate is fairly conservative, as we allow the JLZ investor to 
use the “correct” variance-covariance matrix of errors. 

Note: Return is the monthly percentage return. Market cap is the market 
capitalization in hundred of billions of US dollars. P/E is the price-to- 
earnings ratio as calculated by MSCI. Momentum is latest 6 month return. 
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Table 2. Utility of the JLZ, FFK, and Rational Investor 
from Various Values of  and . fm p

H.P. Set Mean Median S.D. Max Min 

1.00 −0.99 −0.79 1.32 1.64 −10.58 

 −1.10 −0.92 1.27 1.44 −10.63 

 −1.09 −0.89 1.30 1.43 −11.97 

2.00 −0.78 −0.53 1.39 1.83 −9.05 

 −0.90 −0.63 1.35 1.57 −9.05 

 −0.89 −0.60 1.38 1.57 −10.15 

3.00 −1.15 −0.89 1.42 1.48 −10.73 

 −1.28 −1.00 1.38 1.22 −10.79 

 −1.26 −0.98 1.40 1.46 −11.40 

4.00 −1.11 −0.85 1.43 1.71 −11.59 

 −1.23 −0.97 1.38 1.29 −11.62 

 −1.23 −0.97 1.40 1.27 −11.61 

5.00 −1.09 −0.79 1.57 1.55 −15.13 

 −1.19 −0.90 1.53 1.28 −15.14 

 −1.18 −0.87 1.57 1.29 −15.97 

6.00 −0.94 −0.66 1.41 2.30 −15.90 

 −1.07 −0.80 1.37 2.03 −15.92 

 −1.05 −0.77 1.39 2.02 −16.14 

7.00 −0.78 −0.51 1.33 1.84 −9.68 

 −0.90 −0.64 1.29 1.62 −9.70 

 −0.89 −0.60 1.31 1.52 −10.42 

8.00 −1.27 −1.02 1.46 2.21 −8.94 

 −1.38 −1.09 1.42 1.81 −8.94 

 −1.37 −1.08 1.46 1.82 −10.18 

9.00 −0.97 −0.69 1.41 1.95 −13.60 

 −1.08 −0.82 1.37 1.45 −13.60 

 −1.07 −0.80 1.38 1.57 −13.93 

10.00 −1.01 −0.73 1.31 1.82 −8.61 

 −1.12 −0.81 1.28 1.46 −8.61 

 −1.11 −0.79 1.30 1.50 −8.61 

11.00 −0.71 −0.46 1.39 1.72 −10.85 

 −0.86 −0.57 1.33 1.40 −10.89 

 −0.83 −0.56 1.35 1.40 −11.08 

Note: The H.P. is for Hyper-Parameter set. Sets 1 - 11 alter the value of 
vector fm  and p  and as follows: [1 1 1 1 1; 1.1 1 1 1 1; 0.9 1 1 1 1; 1 

1.1 1 1 1; 1 0.9 1 1 1; 1 1 1.1 1 1; 1 1 0.9 1 1; 1 1 1 1.1 1; 1 1 1 0.9 1; 1 1 1 1 
0.9; 1 1 1 1 1.1]. Each set is separated by a semi-colon. For example, set 1 is 
the baseline case where fm  is not altered. Set 2 alters fm  by multiplying 

the 2nd element of fm  by 1.1 and so on and so forth. Each row in the table 

within each set represents the utility for a particular investor. The first row is 
Rational, the second row is the JLZ, and the third row is the FFK investor. 

Table 3. Utility Losses to the JLZ and FFK Investors from 
Various Values of  and . fm p

H.P. Set Mean Median S.D. Max Min 

1.00 0.11 0.08 0.12 1.21 0.00 

 0.09 0.06 0.10 1.39 0.00 

2.00 0.12 0.08 0.13 1.24 0.00 

 0.11 0.08 0.12 1.10 0.00 

3.00 0.13 0.09 0.14 1.37 0.00 

 0.11 0.08 0.11 1.07 0.00 

4.00 0.13 0.09 0.12 0.84 0.00 

 0.12 0.08 0.11 0.88 0.00 

5.00 0.10 0.06 0.12 0.82 0.00 

 0.09 0.06 0.11 1.46 0.00 

6.00 0.13 0.09 0.13 1.14 0.00 

 0.11 0.08 0.11 0.80 0.00 

7.00 0.12 0.09 0.13 1.00 0.00 

 0.11 0.08 0.11 1.38 0.00 

8.00 0.12 0.07 0.14 1.19 0.00 

 0.11 0.07 0.13 1.58 -0.00 

9.00 0.12 0.08 0.12 0.85 0.00 

 0.10 0.07 0.10 1.30 0.00 

10.00 0.11 0.08 0.13 0.91 0.00 

 0.10 0.07 0.11 1.03 0.00 

11.00 0.15 0.11 0.15 1.10 0.00 

 0.12 0.10 0.11 0.79 0.00 

Note: The H.P. is for Hyper-Parameter set. Sets 1 - 11 alter the value of 

vector  and fm p  and as follows: [1 1 1 1 1; 1.1 1 1 1 1; 0.9 1 1 1 1; 1 

1.1 1 1 1; 1 0.9 1 1 1; 1 1 1.1 1 1; 1 1 0.9 1 1; 1 1 1 1.1 1; 1 1 1 0.9 1; 1 1 1 1 
0.9; 1 1 1 1 1.1]. Each set is separated by a semi-colon. For example, set 1 is 
the baseline case where fm  is not altered. Set 2 alters fm  by multiplying 

the 2nd element of fm  by 1.1 and so on and so forth. The first row 

represents the utility loss to the JLZ investor and the second row represents 
the utility loss to the FFK investor for each hyper parameter set. 

 

3. Using the Black-Litterman Approach  
with a Data Based Prior 

3.1. How It Is Usually Done 

Fabozzi, Forcardi, and Kolm (2006; henceafter FFK) 
suggested that one could incorporate a trading strategy, 
possibly based on a factor model, as a prior in the Black 
Litterman approach. The portfolio construction process 
might look as follows.24 

1) Estimate the factor model that represents the port- 
folio manager’s belief, and specify the “prior” from the 
estimates of the model. Suppose that the factor model 
can be written in the following form 

24See p. 32 of Fabbozi, Forcardi, and Kolm (2006). 
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Figure 1. Utility Losses from 1000 Simulations for the JLZ 
Investor. 
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Given the estimate  and , the “prior” for the 
mean of the future return, , can be specified 
as:25 

f̂ ˆ
eΣ
 TE 1g r

 ˆ ˆ,T eNg B f Σ                (28) 

2) Let  be the estimate of the “equilibrium return” 
implied by the Capital Asset Pricing Model. Assume the 
following “model” for : 

π

π

 , 0, Σπ g ε ε N                (29) 

where  is the variance-covariance matrix of future 
returns, i.e., , and 

Σ
 1TV  rΣ    is a known constant. 

Note that ˆ
M wΣ
π

π , where  is an estimate of .26 
From this value of , one can get an estimate of 

Σ̂ Σ
g  

and also get a variance-covariance matrix estimate of the 
estimator: 

 ˆ ˆˆ ˆ, g π V g Σ              (30) 

3) Combine the “prior” with the likelihood of the 
“model” according to Bayes rule. The posterior of the 
mean returns g  is specified by27 
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The posterior mean  Ê g  is sometimes referred to as 
the “Black Litterman alpha”. 

4) Find the optimal portfolio from a mean variance 
optimization using the posterior mean  Ê g  and the 
posterior variance-covariance matrix of stock returns 

.28 That is, solve Σ̂

  1ˆ ˆmax
2

s.t. 1 , 1, ,i i i

E

l w u i N

 

    
w

w g w w

w ι 

Σ
    (32) 

where i  and  are lower and upper bounds on asset 
 weight. 

l iu
i

This procedure takes care of the problem identified in 
the previous section. The Black Litterman alpha is de- 
rived from an equilibrium model as well as from a prior. 
Information on the mean returns is not discarded, remov- 
ing the potential for the type of loss identified in the 
previous section. 

This procedure, however, introduces a new type of 
problem. It is based on two models that are contradictory 
to each other. The prior is built on the belief that a factor 
model is the underlying data generating process, while 
the likelihood is based on the belief that a CAPM is the 
underlying data generating process. Both beliefs cannot 
be true at the same time. As the procedure is based on 
two beliefs, the procedure cannot be optimal regardless 
of which belief is accurate.29 In the following subsection, 
we will show the magnitude of the loss arising from 
adopting this procedure. 

3.2. The Cost of Using Contradictory Models 

3.2.1. The Model and the View 
We will assume that the factor model in Equation (27) is 
the true data generating process, and we will show that 
using the FFK procedure creates a loss. Our argument is 
independent of what the true model is. 

In the previous section, we already discussed the factor 
model in Equation (27), a prior for this model, and the 
resulting predictive mean and the variance. The only 
difference is that in Equation (27) we have  instead  eΣ

25  is an estimate of the error variance, not an estimate of the uncer-Σ̂e

tainty of the mean estimate. In some special cases, however, can 

be interpreted as as estimate of the uncertainty of the mean estimate, 
for example, if there is only one variable on the right hand side of the 
model. 

ˆ
eΣ

26See the section entitled “The Derivation of the CAPM Equilibrium 
Return ” in the appendix available at 
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2191278 for a 
detailed explanation. 

π

27See the appendix available at  
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2191278 for the 
proof. 

of 
1

eh
V . We will also make one modification to the prior  

28  is the posterior mean of the stock return, as it is the posterior  ˆ gE

mean of the mean returns. 
29Meucci’s [9] extension of BL has a similar feature. That is, it is based 
on two inconsistent models. Meucci, however, provides an alternative, 
more appealing justification of his approach based on the idea of rela-
tive entropy. Thus, our criticism has limited relevance to Meucci’s 
approach. 
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in this section. We will assume that the investor does not 
have any prior opinion. This modification not only makes 
the calculation much simpler, but it also makes our 
comparison more relevant. If we suppose that the inv- 
estor who follows the FFK procedure has a certain prior 
opinion, then this investor is making twice as many 
mistakes. The first mistake is ignoring his prior opinion, 
and the second mistake is not using the factor model 
exclusively. Thus, by assuming that the investor does not 
have any prior opinion, we are eliminating one possible 
mistake that the investor could commit by following the 
FFK procedure. 

Formally, the non-informative prior can be expressed 
as 
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        (33) 

This is rather intuitive as it says that the non- 
informative prior is just the prior distribution of the 
factor premium as the variance of the factor premium 
converges to infinity. The formula for the posterior must 
be modified as well. The new formulae are:30 
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The predictive mean and the predictive variance-co- 
variance matrix of the returns are then: 
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3.2.2. An Analytic Formula for Loss 
Consider two investors. One investor, called the FFK 
investor, follows the FFK procedure as described in the 
previous subsection. The other investor, called the RTL 
investor, makes rational decisions based on the factor 
model. 

The RTL investor’s portfolio can be specified as 
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1
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2
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and the RTL investor’s utility can be written as 

   1

1

2

The FFK investor’s portfolio can be specified as 

  1ˆ ˆargmax
2

s.t. 1 , 1, ,

FFK

i i i

E
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      (38) 

and the FFK investor’s utility can be written as 

   1 1

1

2FFK FFK T FFK T FFKU E V   w r w r w       (39) 

As in the previous section, we calculate the loss ana- 
lytically for the simplest case, i.e. the case where there 
are no constraints in the optimization. If there are no 
constraints in the optimization, the RTL investor’s port- 
folio weight and his utility are identical to those pre- 
sented in the previous section, i.e. 

  1
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The FFK investor’s portfolio weight, on the other hand, 
is: 

 1ˆ ˆ
FKK Ew Σ             (42) 

For simplicity, let us assume that the FFK investor’s 
estimate of the variance-covariance matrix  1TV r  is 
not very different from the predictive variance-co- 
variance matrix  1TV r  of the RTL investor.31 Then 
we could write 
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Thus, the loss is approximately quadratic in the dif- 
ference between the FFK investor’s posterior mean and 
the RTL investor’s posterior mean. 

Let us consider the difference between the FFK in- 
vestor’s posterior mean and the RTL investor’s posterior 
mean further. Assuming that the difference between the 
OLS estimator  and the GLS estimator  is not 
large32, one can write 

f̂
ˆ̂
f
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g r π B f Σ Σ Σ  (45) 

Thus, the loss depends on the difference between the 

1RTL RTL T RTL T RTLU E V   w r w r w      (37) 31That is, we are assuming that the FFK investor is using the best esti-
mator of the variance-covariance matrix. This assumption is of course 
more favorable to the FFK investor. 
32This happens when the error covariance is close to an identity matrix, 
i.e. homeskedatic and no serial correlation. 

30
eS , BS , ,  need to be modified as well. 

ˆ̂
f ˆ

eΣ
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multifactor model estimates and the CAPM estimates. 
This is a rather obvious result, considering that the very 
source of the problem was the use of the CAPM, which 
is not the correct model in our example. 

3.2.3. Investor Simulations 
We follow the procedure identical to that of the previous 
section to numerically calculate the magnitude of the 
loss.33 Tables 2 and 3 summarize the simulation results. 
The actual distribution of losses for the FFK investor for 
1000 simulations is shown in Figure 2. The mean loss 
for the FFK investor is between 0.09 and 0.12, while the 
median loss is between 0.06 and 0.10. As before, we 
might interpret this loss as a reduction in the expected 
return of the investor. A conservative estimate would be 
a loss of around 0.09% in expected return per month or 
1.08% on an annualized basis. 

One may notice that the loss of the FFK investor is 
somewhat smaller than the loss of the JLZ investor. This 
is what we could have expected. The loss of the JLZ 
investor is a quadratic function of the error in the mean 
estimate, while the loss of the FFK investor is a linear 
function of the difference in mean estimates of the two 
models. 

4. Using the Black-Litterman Approach as a  
Reverse Optimization Technique 

Practitioners often use the Black-Litterman approach as a 
tool to extract implied expected returns for a given port- 
folio weight vector. Step 3 of the JLZ procedure dis- 
cussed in Section 2 of this paper is an example of this. 

Given a portfolio weight vector 0 , one can derive 
the implied expected return by assuming that the portfo-  

w

 

 

Figure 2. Utility Losses from 1000 Simulations for the FFK 
Investor. 

lio weight vector is a solution to the following optimiza- 
tion problem: 

0

1 ˆargmax
2

Σww w    w w         (46) 

As we have shown in Section 2, the solution is given 
as 

0Σw                  (47) 

where  is the variance-covariance matrix of returns. Σ
One aspect that is often ignored in the “reverse 

optimization” is that the validity of the implied expected 
return depends on the validity of the variance-covariance 
matrix used.34 To the extent that the variance-covariance 
matrix includes an error, the implied expected return also 
includes the error. 

Let 0  be the true variance-covariance matrix. Let 

1  be our estimate of the variance-covariance matrix. 
Then the error in the implied expected return is 

Σ
Σ

 1 0 w0

To have a more intuitive sense of the magnitude of the 
error, we focus on the implied market return, which is 

Σ Σ . 

 1 0Σ ΣwM  0 , where w Mw  is the market capitali- 
zation weight. We present typical values of this bias in 
Table 4, which were calculated from a simulation.35 
When 0  reflects a value weight portfolio , the 80% 
range of the error is from −2.6 to 2.75. That is, excluding 
the 20% worst cases, the error in the expected monthly 
market return can be as high as 2.75%. When 0  re- 
flects an equal-weighted portfolio, the same error can be as 
high as 3.52%. This magnitude of the error can be 
compared to the long-term average return of the market, 
which is around 2%. This is a large error in relative terms. 

w

w

5. Conclusions 

The Black-Litterman model has been used extensively in  
 
Table 4. Bias in the Implied Expected Monthly Market Re- 
turns. 

Type Mean SD 10th Pct Med 90th Pct

VW 0.001 2.09 −2.61 0.11 2.75 

EW 0.010 2.68 −3.33 −0.13 3.52 

Note: VW represents the reverse optimization bias for value-weighted port- 
folio, while EV represents the reverse optimization bias for an equal- 
weighted portfolio in percentage terms. 

34That one recovers the expected return vector rather than the vari-
ance-covariance matrix from the reverse optimization may reflect the 
belief that estimating the variance-covariance matrix is easier than 
estimating the expected return vector. Even if such a belief is reason-
able, one shouldn’t forget that the implied expected return is an esti-
mate. 
35See the appendix available at  
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2191278 for details 
of the simulation. 

33See the appendix available at  
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2191278 for more 
details. 
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asset allocation and in recent years, a number of people 
have proposed applications of it to areas such as trading 
and quantitative portfolio management. Some of these 
methods have necessitated a transformation or adaptation 
of the Black-Litterman model to the specific application. 
Unfortunately, these transformations could be associated 
with unintended consequences. In this paper, we discuss 
three applications of the Black Litterman model that re- 
sult in unnecessary costs to the investor. 

The first type of application creates a portfolio out of a 
prior and an estimate of the variance-covariance matrix, 
but fails to utilize the mean estimate. Not using the mean 
estimate amounts to ignoring a valuable piece of infor- 
mation present in the data. Our conservative estimate of 
the loss from neglecting the mean is about a 1% reduc- 
tion in expected annual returns. Although it is well 
known that means are not estimated as reliably as vari- 
ance and covariances, ignoring the mean estimate cannot 
be an optimal solution. For even if the mean estimate is 
not extremely precise, it is still better to use this estimate 
than to entirely ignore it. 

The second type of application creates a portfolio out 
of two conflicting models of security returns, e.g. the 
CAPM and a multi-factor model. Assuming that the 
multi-factor model is the true model of stock returns, we 
estimate the loss to an investor that chooses to combine 
both a CAPM model and a multi-factor model in his 
portfolio construction. We find the magnitude of this loss 
to be around a 1% reduction in expected annual returns. 
One might justify the use of two models if the portfolio 
manager has no idea regarding which model is more 
likely to be true. In most practical situations, it would be 
unlikely that the portfolio manager or analyst did not 
have a clear idea about which model they believed rep- 
resented the behavior of stock returns. Thus, it makes it 
hard to justify using two contradictory models of stock 
returns. 

The third application is the so-called reverse optimiza- 
tion technique. That is, practitioners often use the weights 
of an index and reverse optimize to obtain the implied 
expected returns of the market. Since the variance-co- 
variance matrix is estimated with error, the implied ex- 
pected returns of such a procedure will also be estimated 
with error. We quantify the magnitude of the errors asso- 
ciated with this technique. We found this error to be quite 
high, in some cases as high as 3.5% per month and much 
higher if the original benchmark was an equal-weighted 
benchmark. This brings into question how useful this 
reverse optimization technique really is. 

No doubt the Black-Litterman model brought a new 
tool to aid asset allocators, portfolio managers, and trad- 
ers with the construction of optimal portfolios. In par- 
ticular, it provided a theoretical framework upon which 
an investor’s prior views about asset markets or stocks 

could be combined with the actual historical data in order 
to construct optimal investments. The main application 
of the Black-Litterman model has been to asset allocation 
across broad asset classes. Recent research has tried to 
integrate the Black-Litterman model in the trading frame- 
work and the quantitative equity portfolio framework. 
These advances are inspiring as they improve the tool set 
for quantitative managers, unfortunately some of the ap-
plications have side effects which we must be aware of. 
In this paper, we have discussed some of the potential 
side effects of these applications of the Black-Litterman 
model. Our estimates of the losses associated with these 
side effects are large from a portfolio management per- 
spective. We also suggest a straightforward way to apply 
the Black-Litterman model without this bias in the port- 
folio construction process. 
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